• Title/Summary/Keyword: Mechanical interaction

Search Result 1,856, Processing Time 0.036 seconds

Heat transfer characteristics of impinging flat plate of multiple slot jets by changing of jet-to-jet distance (배열 슬롯제트의 노즐간격 변화에 따른 충돌면에서의 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho;Ko, Wan-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.534-539
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics on confined jet impinging plate using multiple slot jets has been performed. The effects of jet Reynolds numbers(Re=2000, 3950, 5900, 7900), dimensionlesss slot-to-plate distances(H/B=2, 4, 6, 8) and jet-to-jet distances(S=16B, 20B, 24B, 30B) on the local and average heat transfer coefficients have been examined. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. From the experimental results, it was found that the local and average heat transfer rates increase with increasing jet Reynolds number. Measurements of local heat transfer coefficients produced by multiple of slot jets have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. At S/B=20, Re=7900 and H/B=6, maximum average Nusselt number is obtained.

  • PDF

Behavior of Tip Vortex in a Propeller Fan (프로펠러팬에서의 Tip Vortex 거동)

  • Kim, Sung-Hyup;Furukawa, Masato;Inoue, Masahiro
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1377-1382
    • /
    • 2004
  • Flow fields in a half ducted propeller fan have been investigated by three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations and a vortex core identification technique. The simulation at the design operating condition shows that the tip vortex onset point is located at 30 percent tip chord of the suction surface on the blade tip. There is no interaction between the tip vortex and the adjacent blade, so that the tip vortex smoothly convects to the rotor exit. However, the high vorticity in the tip vortex causes the wake and the tip leakage flow to be twined around the tip vortex and to interact with the pressure surface of the adjacent blade. This flow behavior corresponds well with experimental results by Laser Doppler Velocimetry. On the contrary, the simulation at the low-flowrate operating condition shows that the tip vortex onset point is located at the 60 percent tip chord of the suction surface. In contrast to the design operating condition, the tip vortex grows almost tangential direction, and impinges directly on the pressure surface of the adjacent blade.

  • PDF

Flow Visualization for a Dragonfly Type Wing (잠자리 유형 날개에 대한 흐름 가시화)

  • Kim, Song-Hwak;Kim, Hyun-Seok;Chang, Jo-Won;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry (Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향)

  • Song M.S.;Gee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

Prediction of Short-term Behavior of Buried Polyethylene Pipe (지중매설 폴리에틸렌 관의 단기거동 예측)

  • Park, Joonseok;Lee, Young-Geun;Kim, Sunhee;Park, Jung-Hwan;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

Effect of Ultrasound on the Properties of Biodegradable Polymer Blends of Poly(lactic acid) with Poly(butylene adipate-co-terephthalate)

  • Lee, Sang-Mook;Lee, Young-Joo;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, rheological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration o the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.

Effects of Cutting Conditions on Surface Roughness in Turning (선삭시 절삭조건이 표면거칠기에 미치는 영향 분석)

  • Lee, Sin-Yeong;Kim, Hong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.139-149
    • /
    • 2001
  • The effects of the cutting conditions on the surface roughness of workpiece in turning were studied in this paper. The workpieces made of carbon steel SM20C and SM45C were tamed without the support of the tailstock center. Cutting conditions were changed in three or flour steps in each parameter and cutting fluid was used. The surface roughness results of tests were measured and the effects of the cutting conditions were analyzed by the method of analysis of variance. The summary of the experimental research is as follows. The main parameters were cutting speed, fred-rate, depth of cut, and the interactions between speed and fled-rate, speed and depth of cut, and fred and depth of cut. As cutting speed increased, surface roughness showed lower value. The surface roughnesses of feed-rate 0.102 mm/rev and 0.147 mm/rev were better than those of feed-rate 0.05 mm/rev and 0.2 mm/rev.

  • PDF

Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control (마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현)

  • Kim, Yun-Yong;Kim, Jeong-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis

  • Zhou, Xiang;You, Zhong;Byrne, James M.D.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • Cerebral aneurysm is common lesion among adult population. Current methods for treating the disease have several limitations. Inspired by fern leaves, we have developed a new stent, called leaf stent, which can provide a tailored coverage at the neck of an aneurysm and thus prevent the blood from entering the aneurysm. It alone can be used to treat the cerebral aneurysm and therefore overcomes problems existing in current treating methods. The paper focuses on the numerical simulation of the leaf stents. The mechanical behaviour of the stent in various designs has been investigated using the finite element method. It has been found that certain designs provide adequate radial force and have excellent longitudinal flexibility. The performance of certain leaf stents is comparable and even superior to those of the commercially available cerebral stents such as the Neuroform stent and the Enterprise stent, commonly used for stent assisted coiling, while at the same time, providing sufficient coverage to isolate the aneurysm without using coils.

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.