• 제목/요약/키워드: Mechanical interaction

검색결과 1,841건 처리시간 0.028초

펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석 (Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads)

  • 이장원;문종성;김정규;성기광;김현민
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.127-134
    • /
    • 2017
  • 원자로내부구조물은 다양한 진동하중조건에서 안전성과 건전성을 유지해야한다. 그러므로 미국원자력규제 위원회는 펌프 압력 맥동에 의한 진동을 포함하여 음향으로 유발되는 진동을 평가하기 위한 규제지침서 1.20을 제시하고 있다. 본 논문은 음향-구조 연성해석 기법을 사용하여 펌프 맥동 가진으로 인한 해석을 위해 노심지지배럴 주변의 유체와 구조의 연성을 고려하여 해석하는 방법론을 제안하였다. 해석결과는 미국 Palo Verde 1호기 종합진동평가 프로그램 발전소 시험결과와 잘 일치한다. 따라서 제안된 해석 방법론은 펌프 압력맥동에 대한 노심지지배럴의 구조응답을 평가하기 위한 효과적 방법으로 판단된다.

Advanced Tools for Modeling, Design and Optimization of Wind Turbine Systems

  • Iov Florin;Hansen Anca Daniela;Jauch Clemens;Sorensen Poul;Blaabjerg Frede
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.83-98
    • /
    • 2005
  • As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more important in controlling the interaction between the mechanical system of the wind turbine and the main power system. The presence of power electronics in wind turbines improves their controllability with respect not only to its mechanical loads but also to its power quality. This paper presents an overview of a developed simulation platform for the modeling, design and optimization of wind turbines. The ability to simulate the dynamic behavior of wind turbines and the wind turbine grid interaction using four simulation tools (Matlab, Saber, DIgSILENT and HAWC) is investigated, improved and extended.

The Effects of Nonequilibrium Condensation on Shock/Boundary Layer Interaction

  • Kim, Heuy-Dong;Lee, Kwon-Hee;Toshiaki. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.788-795
    • /
    • 2001
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computation compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilbrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

Evaluation on Interaction Surface of Plastic Resistance for Exposed-type Steel Column Bases under Biaxial Bending

  • Choi Jae-hyouk;Ohi Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.826-835
    • /
    • 2005
  • Exposed-type steel column bases are used widely in low-rise building construction. Numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. This paper presents an experimental investigation of inelastic behaviors of square hollow section (SHS) steel column bases under biaxial bending. Two types of failure modes are considered : anchor bolt yielding and base plate yielding. Different pinching effects and interaction surfaces for biaxial bending are observed for these two modes during bi-directional quasi-static cyclic loading tests. Differences are elucidated using limit analyses based on a simple analytical model.

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • 제1권4호
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.