• Title/Summary/Keyword: Mechanical impact

Search Result 2,804, Processing Time 0.03 seconds

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.

Estimation of Maneuverability of Underwater Vehicles with Ahead Propeller by the Vertical Planar Motion Mechanism Test (VPMM 시험을 통한 선수부에 프로펠러를 갖는 수중운동체의 조종성능 추정)

  • Shin, Myung-Sub;Kim, Dong-Hwi;Kim, Yagin;Hwang, Jong-Hyon;Baek, Hyung-Min;Kim, Sung-Jae;Park, Sang-Jun;Choi, Young-Myung;Park, Hongrae;Kim, Eun-Soo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.168-178
    • /
    • 2022
  • In this study, the resistance test, the vertical static angle of the attack test and VPMM test will be conducted to estimate the maneuverability of underwater vehicles with ahead propeller. The vertical static test will be conducted within the range of -40deg to 40deg, to investigate the cross-flow drag at high incidence angles. The tests will be conducted by dividing the propeller rotation into a case in which the propeller rotates at a specific rpm, and a case in which the propeller rotates naturally, according to the towing speed. Hydrodynamic coefficients of vertical direction will be estimated by the captive model tests. Additionally, the vertical dynamic stability index based on estimated hydrodynamic coefficients will be calculated and the impact of the propeller revolution state on the index will be investigated. The results are expected to be used as reference test data for underwater vehicles with ahead propeller.

Low-Temperature Characteristics of Type 4 Composite Pressure Vessel Liner according to Rotational Molding Temperature (타입 4 복합재 압력용기 라이너의 회전 성형 온도에 따른 저온 특성)

  • Jung, Hong-Ro;Park, Ye-Rim;Yang, Dong-Hoon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • Low-temperature characteristics according to internal temperature conditions during rotational molding of Type 4 pressure vessel liners were studied in this paper. Since rotational molding has a sensitive effect on the formability of the liner depending on the temperature conditions, the temperature conditions for the polyamide used should be accurately set. The structural changes of polyamide as the liner material was analyzed the surface by atomic force microscope (AFM), and the crystallinity measured with a differential scanning calorimeter (DSC) is used to evaluate the change of the mechanical strength value at low temperature. In addition, the formability of the liner was confirmed by observation of the yellow index inside the liner. As a result, as the melting range of the internal temperature becomes wider, the yellow index shows a lower value, and the elongation and impact characteristics at low temperatures are improved. It was also confirmed that the structure of the polyamide was uniform and the crystallinity was high by AFM and DSC. These experimental results contribute to the improvement of characteristics at low temperatures due to changes in temperature conditions during rotational molding.

A Study on the Vibration Analysis of Spindle Housing with High Strength Aluminum of 2NC Head in Five-axis Cutting Machine Training (5축 절삭가공기 교육 중 2NC 헤드의 고강도 알루미늄을 적용한 스핀들 하우징의 극한 조건의 진동해석에 관한 연구)

  • Lee, Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.119-125
    • /
    • 2022
  • Materials used for education are materials such as SM20C, Al6061, and acrylic. SM20C materials are carbon steel and are often used in certification tests and functional competitions, but are also widely used in industrial sites. The Al6061 material is said to be a material that has lower hardness and stronger flexibility than carbon steel, so it is a material that generates a lot of compositional selection of tools. If students are taught practical training using acrylic materials, vibration occurs due to excessive cutting in some parts and damage to the tool occurs. In this process, we examine to what extent the impact on the 2NC head, which is a five-axis equipment, can affect precision control. The weakest part of the five-axis equipment can be said to be the weakest part of the head that controls the AC axis. When the accuracy and cumulative tolerance of this part occur, the accuracy of all products decreases. Therefore, the core part of the 2NC head, the spindle housing, was carried out using an Al7075 T6 (Alcoa, USA) material. In the process of vibration and cutting applied to this material, the analysis was conducted to find out the value applied to the finite element analysis under extreme conditions. It is hoped that this analysis data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

Establishment of Crowd Management Safety Measures Based on Crowd Density Risk Simulation (군중 밀집 위험도 시뮬레이션 기반의 인파 관리 안전대책 수립)

  • Hyuncheol Kim;Hyungjun Im;Seunghyun Lee;Youngbeom Ju;Soonjo Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2023
  • Generally, human stampedes and crowd collapses occur when people press against each other, causing falls that may result in death or injury. Particularly, crowd accidents have become increasingly common since the 1990s, with an average of 380 deaths annually. For instance, in Korea, a stampede occurred during the Itaewon Halloween festival on October 29, 2022, when several people crowded onto a narrow, downhill road, which was 45 meters long and between 3.2 and 4 meters wide. Precisely, this stampede was primarily due to the excessive number of people relative to the road size. Essentially, stampedes can occur anywhere and at any time, not just at events, but also in other places where large crowds gather. More specifically, the likelihood of accidents increases when the crowd density exceeds a turbulence threshold of 5-6 /m2. Meanwhile, festivals and events, which have become more frequent and are promoted through social media, garner people from near and far to a specific location. Besides, as cities grow, the number of people gathering in one place increases. While stampedes are rare, their impact is significant, and the uncertainty associated with them is high. Currently, there is no scientific system to analyze the risk of stampedes due to crowd concentration. Consequently, to prevent such accidents, it is essential to prepare for crowd disasters that reflect social changes and regional characteristics. Hence, this study proposes using digital topographic maps and crowd-density risk simulations to develop a 3D model of the region. Specifically, the crowd density simulation allows for an analysis of the density of people walking along specific paths, which enables the prediction of danger areas and the risk of crowding. By using the simulation method in this study, it is anticipated that safety measures can be rationally established for specific situations, such as local festivals, and preparations may be made for crowd accidents in downtown areas.

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

The Geomorphological Characteristics of Coastal Dune in Young Gwang, Jeonnam (전남 영광 지역의 해안사구 지형 특성)

  • PARK, Cheol-Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.177-191
    • /
    • 2011
  • This paper describes a dune field on shoreline of Young Gwang. To clarify geomorphic characteristics, made an analysis of grain size of the sand sediments samples and surface texture of quartz grains, and field survey. The following results were obtained : 1) Young Gwang sand dune is taking to pieces by human impact, and dose not move ahead the process of sand dune. 2) there was a turbulence of sand sediments outcrops saying to the cryoturbation that represents cold climatic environments, 3) Constituents of sand dune are mainly fine and very fine sand(2.5~4.5Φ) consisted by quartz and feldspar. Young Gwang sand grians have some analogy with different sites in west coast 4) In surface texture, roundness is thought to have been formed sub-angular, and some V cracks represented mechanical weathering environments. Especially, the dune environment has significant cultural and archaeological values arising from the occupation of human in the past. Those areas where occupation is known provide a valuable source of past records relating to human settlement.

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.

Korean Society of Heart Failure Guidelines for the Management of Heart Failure: Management of the Underlying Etiologies and Comorbidities of Heart Failure

  • Sang Min Park;Soo Youn Lee;Mi-Hyang Jung;Jong-Chan Youn;Darae Kim;Jae Yeong Cho;Dong-Hyuk Cho;Junho Hyun;Hyun-Jai Cho;Seong-Mi Park;Jin-Oh Choi;Wook-Jin Chung;Seok-Min Kang;Byung-Su Yoo;Committee of Clinical Practice Guidelines, Korean Society of Heart Failure
    • Korean Circulation Journal
    • /
    • v.53 no.7
    • /
    • pp.425-451
    • /
    • 2023
  • Most patients with heart failure (HF) have multiple comorbidities, which impact their quality of life, aggravate HF, and increase mortality. Cardiovascular comorbidities include systemic and pulmonary hypertension, ischemic and valvular heart diseases, and atrial fibrillation. Non-cardiovascular comorbidities include diabetes mellitus (DM), chronic kidney and pulmonary diseases, iron deficiency and anemia, and sleep apnea. In patients with HF with hypertension and left ventricular hypertrophy, renin-angiotensin system inhibitors combined with calcium channel blockers and/or diuretics is an effective treatment regimen. Measurement of pulmonary vascular resistance via right heart catheterization is recommended for patients with HF considered suitable for implantation of mechanical circulatory support devices or as heart transplantation candidates. Coronary angiography remains the gold standard for the diagnosis and reperfusion in patients with HF and angina pectoris refractory to antianginal medications. In patients with HF and atrial fibrillation, longterm anticoagulants are recommended according to the CHA2DS2-VASc scores. Valvular heart diseases should be treated medically and/or surgically. In patients with HF and DM, metformin is relatively safer; thiazolidinediones cause fluid retention and should be avoided in patients with HF and dyspnea. In renal insufficiency, both volume status and cardiac performance are important for therapy guidance. In patients with HF and pulmonary disease, beta-blockers are underused, which may be related to increased mortality. In patients with HF and anemia, iron supplementation can help improve symptoms. In obstructive sleep apnea, continuous positive airway pressure therapy helps avoid severe nocturnal hypoxia. Appropriate management of comorbidities is important for improving clinical outcomes in patients with HF.