• Title/Summary/Keyword: Mechanical immobilization

Search Result 39, Processing Time 0.022 seconds

Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization (압전 재료의 탄성표면파 특성과 단백질의 고정화)

  • Chong, Woo-Suk;Hong, Chul-Un;Kim, Gi-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.166-171
    • /
    • 2006
  • In this study, in using a piezoelectric material of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ (PMN-PT), which has a high electromechanical coupling coefficient, we have tried to study about this material can be practically available as a new biosensor to detect protein by using surface acoustic wave (SAW). As the results, the filtering of the center frequency of the PMN-PT substrate is a superior result to that of the $LiTaO_3$ (LT) substrate, but the result was not completely satisfactory. Also this study attempts to develop a sensing method to detect mismatched DNA in order to diagnose cancer. We could directly immobilize the MutS to the NTA using the EDC solution. But, we immobilized MutS using nickel and it is judged that is more effective method to detect mismatched DNA.

Covalent Coupling of ${\beta}-Fructofuranosidase$ on Microbial Cells (미생물 세포에 공유결합으로 고정화시킨 ${\beta}-Fructofuranosidase$에 관한 연구)

  • Uhm, Tai-Boong;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.267-272
    • /
    • 1984
  • ${\beta}-Fructofuranosidase$ was immobilized covalently on the oxidized microbial wall of a Penicillium spp. 'PS-8', which is totally different from the conventional whole cell immobilization in concept. The immobilization of ${\beta}-fructofuranosidase$ by a series of treatments; oxidation of microbial cells with sodium metaperiodate, enzyme loading on the oxidized cells, extrusion, and crosslinking induced by glutaradehyde, were carried out. The final product had a good mechanical strength and showed 26% of the applied enzyme activity. The specific activity was 750 units per g of the dry cell product. The immobilized enzyme showed the kinetic parameters as follows; optimum pH at 5, optimum temperature at $55^{\circ}C$, activation energy of 19 kJ $mol^{-1}$, and apparent Km of 55 mM.

  • PDF

Functional Silk Proteins: Molecular Structure and Application to Biomaterials

  • Makoto Demura;Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 2002
  • Silk proteins consist of two major proteins, fibroin and sericin. There is currently an enormous reawakening of interest in these silk proteins as a biomaterial due to their mechanical and biological properties based on the detailed findings. Novel method for determination of the crystalline structure of silk proteins in an atomic level using nuclear magnetic resonance (NMR) was reviewed. Recent application of silks to biomaterials and prospects for future were discussed.

Investigations with respect to the electrochemical properties of carbon paste electrode fabricated using polybutadiene binder (폴리부타디엔 결합재를 이용하여 만든 탄소반죽전극의 전기화학적 특성에 관한 연구)

  • Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • For the practical use as a biosensor, a rubber electrode bound by polybutadiene was newly devised for the determination of hydrogen peroxide. Then its electrochemical behaviors were investigated. The signal could be obtained at low electrode potential between 0.0 ~ -0.5 V (vs. Ag/AgCl) with a detection limit of $1.4{\times}10^{-4}M$ and its potential dependence was linear in the experimental range. Especially its Lineweaver-Burk plot showed a very good linearity giving the evidence of a good enzyme immobilization on the surface of the electrode. And mechanical stability of the electrode resulted from using rubber binder presented a new possibility for the practical use of biosensor.

Microfluidic Immuno-Sensor Chip using Electrical Detection System (전기 검출 시스템을 이용한 Microfluidic Immuno-Sensor Chip)

  • Maeng, Joon-Ho;Lee, Byung-Chul;Cho, Chul-Ho;Ko, Yong-Jun;Ahn, Yoo-Min;Cho, Nahm-Gyoo;Lee, Seoung-Hwan;Hwang, Seung-Yong
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.325-330
    • /
    • 2006
  • This study presents the characterization of an integrated portable microfluidic electrical detection system for fast and low volume immunoassay using polystyrene microbead, which are used as immobilization surfaces. In our chip, a filtration method using the microbead was adopted for sample immobilization and immunogold silver staining(IGSS) was used to increase the electrical signal. The chip is composed of an inexpensive and biocompatible Polydimethylsiloxane(PDMS) layer and Pyrex glass substrate. Platinum microelectrodes for electric signal detection were fabricated on the substrate and microchannel and pillar-type microfilters were formed in the PDMS layer. With a fabricated chip, we reacted antigen and antibody according to the procedures. Then, silver enhancer was injected to increase the size of nanogold particles tagged with the second antibody. As a result, microbeads were connected to each other and formed an electrical bridge between microelectrodes. Resistance measured through the electrodes showed a difference of two orders of magnitude between specific and nonspecific immuno-reactions. The detection limit was 10 ng/ml. The developed immunoassay chip reduced the total analysis time from 3 hours to 50 min. Fast and low-volume biochemical analysis has been successfully achieved with the developed microfilter and immuno-sensor chip, which is integrated to the microfluidic system.

HeLa Cell Culture on Nanoimprinted Patterns Using Conducting Polymer (전도성 고분자 나노임프린트 패턴 상의 HeLa 세포 배양)

  • Ahn, Junhyoung;Park, Kyungsook;Lee, Suok;Jung, Sanghee;Lim, Hyungjun;Shin, Yong-Beom;Lee, JaeJong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.63-67
    • /
    • 2017
  • In bioscience and biotechnology, the research of fundamental life mechanisms and their diseases caused by insufficiency is important. The study of a whole organism is difficult and sometimes impossible because of DNA, RNA, proteins, cellular organelles, various cells, and organs. Cell cultures can provide a simple method for researching cellular mechanisms and conditions, both in terms of physiological performance, and in response to chemical stimulation. According to conventional cell culture methodology, the flat surface is used with surface treatments for cell adhesion on the surface. Micro- and nanoscale patterns have been developed with chemical and biochemical modifications for cell immobilization. In this study, HeLa cell culture on nanostructures patterns was studied, including the 300 nm line and 150 nm pillar structures, using nanoimprint lithography and pyrrole as a biocompatible conducting polymer.

Preparation and Properties of Silk Fibroin/Alginate Blend Sponges and its Application

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi;Lee, Yong-Woo;Lee, Jang-Hern;Ham, Tae-Won;Ki, Chang-Seok;Park, Young-Hwan
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.55-56
    • /
    • 2003
  • Silk fibroin (SF) is one of the typical protein polymer produced by silkworm, Bombyx mori. SF has been used as textile fiber and surgical suture fur thousands of years due to its unique gloss, handle, and mechanical properties. Recently, SF has been intensively studied to diverse usage for biotechlological and biomedical fields because of their reproducibility, environmental compatibility, non-toxicity, and biological compatibility. Based on its biocompatibility, the possible uses of regenerated SF have been proposed including substrate for cell culture[1], enzyme immobilization[2], and matrix for drug release[3]. (omitted)

  • PDF

Production of Acrylic Acid from Acrylonitrile by Immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99

  • Shen, Mei;Zheng, Yu-Guo;Liu, Zhi-Qiang;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.582-587
    • /
    • 2009
  • Immobilized cells of Arthrohacter nitroguajacolicus ZJUTB06-99 capable of producing nitrilase were used for biotransformation of acrylonitrile to acrylic acid. Six different entrapment matrixes were chosen to search for a suitable support in terms of nitrilase activity. Ca-alginate proved to be more advantageous over other counterparts in improvement of the biocatalyst activity and bead mechanical strength. The effects of sodium alginate concentration, $CaCl_2$ concentration, bead diameter, and ratio by weight of cells to alginate, on biosynthesis of acrylic acid by immobilized cells were investigated. Maximum activity was obtained under the conditions of 1.5% sodium alginate concentration, 3.0% $CaCl_2$ concentration, and 2-mm bead size. The beads coated with 0.10% polyethylenimine (PEI) and 0.75% glutaraldehyde (GA) could tolerate more phosphate and decrease leakage amounts of cells from the gel. The beads treated with PEI/GA could be reused up to 20 batches without obvious decrease in activities, which increased about 100% compared with the untreated beads with a longevity of 11 batches.

Total Ankle Replacement (족근관절 전치환술)

  • Park, I.H.;Lee, K.B.;Song, K.W.;Lee, J.Y.;Lee, E.J.;Lee, S.Y.
    • Journal of Korean Foot and Ankle Society
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • The functional disabilities post arthrodesis of the ankle include difficulty in climbing inclined surface, such as hill, ramps, or stair even through without pain. There will be periankle joints arthrosis as time passes. Total ankle replacement permits remobilization, no need for prolonged immobilization. There will be no increas in the mechanical stress of the neiboring joint. Total ankle replacement has been proposed as an alternative to arthrodesis in the management of painful arthrosis of the tibiotalar joint recently. We performed 7 cases of replacement from 1990. 4. 1 to 1996. 7. 1 with 2-3 years follow up. A retrospective review was undertaken for 7 patients with the arthrosis of tibiotatar joint. The results were as following. 1. The clinical results according to the point system for ankle study evaluation were excellent in 2 cases, good in 4 cases, and fair 1 case. 2. The improvement was especially obvious in terms of pain and functional recovery. 3. Total ankle replacement especially unconstrained type seems quite good alternative to arthrodesis.

  • PDF

Fabrication of Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and YIGSR Peptides

  • Choi, Won-Sup;Bae, Jin-Woo;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Mi-Hee;Park, Jong-Chul;Kwon, Il-Keun
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.458-463
    • /
    • 2009
  • Polyurethane (PU) is widely used as a cardiovascular biomaterial due to its good mechanical properties and hemocompatibility, but it is not adhesive to endothelial cells (ECs). Cell adhesive peptides, GRGDS and YIGSR, were found to promote adhesion and spreading of ECs and showed a synergistic effect when both of them were used. In this study, a surface modification was designed to fabricate an EC-active PU surface capable of promoting endothelialization using the peptides and poly(ethylene glycol) (PEG) spacer, The modified PU surfaces were characterized in vitro. The density of the grafted PEG on the PU surface was measured by acid-base back titration to the terminal-free isocyanate groups. The successful immobilization of pep tides was confirmed by amino acid analysis, following hydrolysis, and contact angle measurement. The uniform distribution of peptides on the surface was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). To evaluate the EC adhesive property, cell viability test using human umbilical vein EC (HUVEC) was investigated in vitro and enhanced endothelialization was characterized by the introduction of cell adhesive peptides, GRGDS and YIGSR, and PEG spacer. Therefore, GRGDS and YIGSR co-immobilized PU surfaces can be applied to an EC-specific vascular graft with long-term patency by endothelialization.