• Title/Summary/Keyword: Mechanical healing

Search Result 165, Processing Time 0.031 seconds

Patch Augmentation for Massive Rotator Cuff Tears

  • Yoon, Jong Pil
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • Rotator cuff tears commonly affect the shoulder joints. Despite developments in surgical techniques and instrumentation, the treatment of massive rotator cuff tears remains challenging. The problems associated with rotator cuff repairs, such as inferior mechanical properties and high retear rates are yet to be solved. Recently, patch augmentation has been suggested as an alternative treatment because it can reinforce mechanical properties at the initial stage of healing and reduce gap formation. The purpose of this article was to comprehensively summarize the concepts and the consensus surrounding patch augmentation and evaluate the clinical and anatomical outcomes after patch augmentation for massive rotator cuff tears.

A Study on Product Data Quality Assurance for Automotive Industry (자동차산업에서 제품데이터품질 향상을 위한 연구)

  • Yang Jeongsam;Han Soonhung;Kang Hyejeong;Kim Junki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.184-193
    • /
    • 2005
  • Digital representations of products and parts have largely replaced physical drawings as the form in which product data are stored, analyzed, and communicated among the people contributing to the design of an automobile. Many individuals and companies participate in the design of an increasingly complex automobile; hence, the design process depends critically on team members' ability to share information about essential design elements. These trends have elevated the importance of the quality of product data and its efficient exchange. In this paper, we show state-of-the-art on Product Data Quality(PDQ), and activities of PDQ assurance. And we propose a novel design history-based approach for diagnosis and healing of a CAD model.

Repair of furcal perforation with mineral trioxide aggregate in dogs

  • Masataka, Suehara;Rie, Fujii;Masayasu, Kuroda;Kensuke, Saito
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.578-578
    • /
    • 2003
  • I. Objectives The purpose of this study was to investigate, histologically, healing in the periodontal tissue after mechanical furcation perforations using Mineral Trioxide Aggregate (PRO ROOTMTA). II. Materials and Methods These experiments were carried out on mandibular and maxilla premolars and molars obtained from 12 dogs more than one year old and which had clinically healthy periodontia. A total of 34 perforations were made. These were divided into Control(9), MTA(25) groups respectively. A sterile round bur (1mm in diameter) was used to create a mechanical perforation in the furcal floor.(omitted)

  • PDF

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Effect of microthreads on removal torque and bone-to-implant contact: an experimental study in miniature pigs

  • Kwon, Yee-Seo;Namgoong, Hee;Kim, Jung-Hoon;Cho, In Hee;Kim, Myung Duk;Eom, Tae Gwan;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • Purpose: The objective of this study was to evaluate the effect of microthreads on removal torque and bone-to-implant contact (BIC). Methods: Twelve miniature pigs for each experiment, a total of 24 animals, were used. In the removal torque analysis, each animal received 2 types of implants in each tibia, which were treated with sandblasting and acid etching but with or without microthreads at the marginal portion. The animals were sacrificed after 4, 8, or 12 weeks of healing. Each subgroup consisted of 4 animals, and the tibias were extracted and removal torque was measured. In the BIC analysis, each animal received 3 types of implants. Two types of implants were used for the removal torque test and another type of implant served as the control. The BIC experiment was conducted in the mandible of the animals. The $P_1-M_1$ teeth were extracted, and after a 4-month healing period, 3 each of the 2 types of implants were placed, with one type on each side of the mandible, for a total of 6 implants per animal. The animals were sacrificed after a 2-, 4-, or 8-week healing period. Each subgroup consisted of 4 animals. The mandibles were extracted, specimens were processed, and BIC was analyzed. Results: No significant difference in removal torque value or BIC was found between implants with and without microthreads. The removal torque value increased between 4 and 8 weeks of healing for both types of implants, but there was no significant difference between 8 and 12 weeks. The percentage of BIC increased between 2 and 4 weeks for all types of implants, but there was no significant difference between 4 and 8 weeks. Conclusions: The existence of microthreads was not a significant factor in mechanical and histological stability.

THE STUDY OF BONE HEALING ON PARTIAL DEFECT OF CALVARIAL BONE WITH OR WITHOUT PERIOSTEUM IN RAT (백서 두개골 부분결손시 골막 유무에 의한 골치유 양상에 관한 연구)

  • Song, Young-Wan;Cho, Byoung-Ouck;Shin, Jung-Weon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.746-757
    • /
    • 1996
  • Bony defects may be found as a result of congenital anomalies, traumatic injury, automobile collisions and industrial accidents in the maxillofacial area. Such conditions are often associated with severs functional and esthetic problem. Various surgical procedure has been utilized in attempts to repair and reconstruct bony defects. Bone is a complex, living, constantly changing tissue. The architecture and composition of cancellous and cortical bone allow the skeleton to perform its essential mechanical functions. Periosteum covers the external surface of bone and consists of two layers : an outer fibrous layer and an inner more cellular and vascular layer. The inner osteogenic layer or cambium layer can form new bone while the outer layer firms part of the insertions of tendons, ligaments and muscles. This study was under taken to evaluate bone healing process on partial defect of calvarial bone with or without periosteum in rat. We made calvarial defects of different size(4mm, 6mm, 8mm) with periosteum or without periosteum in rat to study the effect of defect size on healing process. Control and experimental groups sacrified at 1, 2, 4, 6, 8 weeks, postoperatively. We examed the specimens by gloss findings, light microscophy, and fluorescent microscophy. The results were as follows. 1. Gloss findings: Control groups are larger bony defects than experimental groups after 2 weeks, and than control groups advanced healing of defected bone but experimental groups are lesser after 4, 6 weeks. After 8 weeks, bone defect has not been identified in control and experimental groups. 2. Light microscope: All defects of control groups are larger bony defects than experimental groups after 2 weeks. And than control groups show smaller defect after 4 weeks. After 8 weeks, the control group reveal pin-point sized, hardly identifiable defect space and the experimental group reveal small, but definite defect space. 3. Fluorescent microscope : Each week, new bone formation of control group is very similar to the experimental group. In this study, Osteogenesis of calvarial bone defects with periosteum or without periosteum was examined for 8 weeks in rats. The replaced periosteum had batter new bone formation than the removed periosteum.

  • PDF

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

Complication and management of implant-assisted removable partial denture with distal extension: a clinical report (양측성 후방연장 임플란트 보조 국소의치의 합병증과 관리: 증례보고)

  • Choi, Jung-Yun;Lee, Jung-Jin;Song, Kwang-Yeob;Park, Ju-Mi;Kim, Kyoung-A;Seo, Jae-Min
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.338-344
    • /
    • 2016
  • Implant supported removable partial denture (ISRPD) using the implants enables favorable rehabilitation by complementing biomechanical limitations of the conventional removable partial denture (RPD). However, continuous recall check is necessary for evaluation of the mechanical and biological complications to ensure good long-term prognosis of ISRPD. This clinical report describes the complication and management in patient of Kennedy class I edentulism with ISRPD using healing abutment. The wear and fracture of healing abutment occurred at 36 months after delivery. So, healing abutment was replaced by connecting $Locator^{(R)}$ abutment for altering into the implant retained partial overdenture.

Fabrication and application of post surgical anti-adhesion barrier using bio-compatible materials (생체 적합성 재료를 이용한 수술후 유착 방지막의 제작과 응용)

  • Park S.H.;Kim H.C.;Yang D.Y.;Kim T.K.;Park T.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-204
    • /
    • 2006
  • Studies on some biodegradable polymers and other materials such as hydrogels have shown the promising potential for a variety of surgical applications. Postoperative adhesion caused by the natural consequence of surgical wound healing results in problems of the repeated surgery. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall of this work, a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel has been developed. The ideal barrier for preventing postoperative adhesion would have the following properties; it should be (i) resorbable (ii) non-reactive (iii) easy to apply (iv) capable of being fixed in position. In order to fulfill these properties, we adopted solid freeform fabrication method combined with surface modification which includes the hydrogel coating, therefore, inner or outer structure can be controlled and the property of anti adhesion can be improved.

  • PDF

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.