• 제목/요약/키워드: Mechanical grinding

검색결과 436건 처리시간 0.029초

Method and mechanism of dispersing agent free dispersion of short carbon fibers in silicon carbide powder

  • Raunija, Thakur Sudesh Kumar;Mathew, Mariamma;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.180-186
    • /
    • 2014
  • This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.

분말 고속도공구강 평엔드밀의 공구마멸 평가 (Evaluation of Tool Wear of P/M High Speed Steel Flat Endmill)

  • 정하승;고태조;김희술;배종수;김용진
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.154-160
    • /
    • 2002
  • Powder metallurgy(P/M) process has been used for the production of high performance high-speed steels. P/M high speed steel has more uniform and fine microstructure than those of conventional wrought products. Therefore, it offers distinct advantages over conventional tool steels. The superior uniformity of composition and fine microstrucure lead to excellent toughness and less distortion during heat treatment, which in turn can reduce total grinding costs and provides other benefits, such as uniform hardness and increased tool life. From these reasons, milling, hole machining, broaching, and gear manufacturing tools are major applications of P/M high-speed steels. In this research, we evaluated tool wear of flat endmill which is made of P/M high-speed steel from the view point of cutting tool performance.

Study on the Effect of Surface Finishing Methods on Pitting Corrosion Behavior of 304 Stainless Steel Alloy

  • Yun, JunTae;kim, Se-Woong;Hwang, HyangAn;Toor, Ihsan-Ul-Haq;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.209-216
    • /
    • 2009
  • In this study the effect of different surface finishing techniques on the pitting corrosion behaviour of a commercial 304 stainless steel alloy was investigated. Surface finishing methods were divided into two categories, i.e. mechanical and chemical. Mechanical treatment methods include power tooling such as grinding, emery paper brushing, stainless steel wire brushing and stainless steel shot blasting. Chemical treatment methods include chemical passivation (phosphoric acid, citric acid, nitric acid) and electro-cleaning (phosphoric acid and citric acid). Potentiodynamic polarization experiments were carried out in 3.5 wt. % NaCl solution at room temp. (20 $^{\circ}C$). The results showed that chemical treatment methods improved the corrosion resistance of stainless steel 304, measured in terms of pitting potential ($E_{pit}$). Corrosion resistance of the specimens was increased in the order of; electro-cleaning > manual passivation > mechanical cleaning. Surface of electro-cleaned specimens was smoother than rest of the surface treatment methods. Chrome content in chemically treated specimens was higher than in mechanically treated specimens as shown by EDX analysis.

3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구 (Structural Optimization of Additive/Subtractive Hybrid Machines)

  • 박준구;김은중;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

TP 316L 스테인리스강의 기계가공 및 열처리에 의한 표면잔류응력 특성 측정 연구 (Study on Effect of Mechanical Machining and Heat Treatment on Surface Residual Stress of TP316L Stainless Steel)

  • 이경수;이정근;송기오;박재학
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.453-458
    • /
    • 2011
  • 본 논문은 TP316L 스테인리스강 재료에 대한 표면 기계가공 및 열처리에 의한 잔류응력의 생성 및 변화에 대해 연구한 것이다. 연구를 위해서 TP316L 시편에 대해 방전가공, 밀링, 연마의 3 가지 기계가공을 수행하고 표면의 잔류응력을 측정하였다. 동일한 방법으로 기계가공한 다른 시편은 열처리를 수행한 후에 표면잔류응력을 측정하여 열처리를 수행하지 않은 시편과의 차이를 비교하였다. 잔류응력측정은 엑스선회절법을 사용하였다. 또한 각 시편에 대해 비커스경도를 측정하여 열처리 수행전과 수행후의 경도를 비교하였다. 본 연구를 통해서 기계가공 방법에 따라 잔류응력의 형태가 달라지며 열처리에 의해서 대부분의 잔류응력이 제거됨이 확인되었다. 경도는 잔류응력의 인장 또는 압축의 방향에는 관계없이 크기에만 관련성이 있는 것으로 관찰되었다.

유리섬유/폴리에스테르 복합재료 패널 접합부의 접착강도에 관한 표면성질의 효과 (Effect of Surface Properties on Adhesive Strength of Joint of Glass Fiber/Polyester Composite Panels)

  • 팜탄눗;염영진
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1591-1597
    • /
    • 2012
  • 복합재료 접합부의 접착강도에 대한 접착면 성질의 영향을 알아 보기 위해 불포화폴리에스테르, 우븐과 매트 유리섬유를 사용하여 복합재료 접합시편들을 제작하였다. 접착제, 복합재료 접착물, 말단접합과 이차접합 시편들의 기계적 성질을 실험에 의해 구하고 실험결과를 접합이론에 적용하였다. 6 개의 접합부들에서 발생하는 최대 및 평균 전단 응력은 최대 인장력과 접합 시편의 기하학적 변수들로부터 계산되었다. 실험 결과 접합면을 연마한 후 아세톤으로 처리한 경우가 말단접합의 3 가지 형태 중 가장 큰 강도를 가지고 있음이 관찰되었다. 마찬가지로 매트-매트와 매트-우븐 접합이 거의 같은 값으로 이차 접합의 3 가지 형태 중 가장 큰 강도를 가지고 있었다. 반대로 아무 처리도 하지 않은 접합시편과 우븐-우븐 접합시편은 매우 낮은 강도를 가졌다. 각각의 경우 파손은 접합부 양끝에서 심하게 발생하였고 접합부 가운데로 이동하였다.

가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성 (Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing)

  • 김진권;최재형;남산;류성수;김성원
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics

  • Mosharraf, Ramin;Rismanchian, Mansour;Savabi, Omid;Ashtiani, Alireza Hashemi
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권4호
    • /
    • pp.221-228
    • /
    • 2011
  • PURPOSE. Veneering porcelain might be delaminated from underlying zirconia-based ceramics. The aim of this study was the evaluation of the effect of different surface treatments and type of zirconia (white or colored) on shear bond strength (SBS) of zirconia core and its veneering porcelain. MATERIALS AND METHODS. Eighty zirconia disks (40 white and 40 colored; 10 mm in diameter and 4 mm thick) were treated with three different mechanical surface conditioning methods (Sandblasting with $110{\mu}m$ $Al_2O_3$ particle, grinding, sandblasting and liner application). One group had received no treatment. These disks were veneered with 3 mm thick and 5 mm diameter Cercon Ceram Kiss porcelain and SBS test was conducted (cross-head speed = 1 mm/min). Two and one way ANOVA, Tukey's HSD Past hoc, and T- test were selected to analyzed the data (${\alpha}=0.05$). RESULTS. In this study, the factor of different types of zirconia ceramics (P=.462) had no significant effect on SBS, but the factors of different surface modification techniques (P=.005) and interaction effect (P=.018) had a significant effect on SBS. Within colored zirconia group, there were no significant differences in mean SBS among the four surface treatment subgroups (P=0.183). Within white zirconia group, "Ground group" exhibited a significantly lower SBS value than "as milled" or control (P=0.001) and liner (P=.05) groups. CONCLUSION. Type of zirconia did not have any effect on bond strength between zirconia core and veneer ceramic. Surface treatment had different effects on the SBS of the different zirconia types and grinding dramatically decreased the SBS of white zirconia- porcelain.

대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구 (An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine)

  • 송창규;김경호;황주호;김병섭;박천홍;이호철
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.