• Title/Summary/Keyword: Mechanical force

Search Result 5,418, Processing Time 0.03 seconds

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

Design of a Rectangular-Type Voice Coil Actuator for Frame Vibration Compensation

  • Choi, Young-Man;Ahn, Dahoon;Gweon, Dae-Gab;Lee, Moon Gu
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.348-355
    • /
    • 2016
  • Precision motion stages used in the manufacturing process of flat-panel displays have inevitably low settling performance due to their huge mass and bulky structures. In order to improve the settling performance, several methods of frame vibration compensation have been developed so far. These methods are used to cancel the vibration by imposing a counter force or modifying the resonance mode of the frame of the stage. To compensate the frame vibration, high force actuators are required. In this paper, a mighty voice coil actuator is proposed to generate the counter force against the frame vibration. The proposed voice coil actuator has an axis-symmetric rectangular structure to achieve a large force with simple and low cost fabrication. Also, the voice coil actuator allows radial clearance up to ${\pm}4mm$. Using an optimized design process and a magnetic circuit model, the power consumption is minimized while the required force is obtained. With a power of 322 W, the VCA has been designed to have a maximum force of 574 N with a force constant of 164 N/A. Experimental results verified the force constant of the fabricated voice coil actuator is well matched with the designed value.

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

Measurements of Mechanical Behavior of Rough Rice under Impact Loading (벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究))

  • Cha, J.Y.;Koh, H.K.;Noh, S.H.;Kim, M.S.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

Research for Measurement and Modeling on Blocked Force of Electroactive Paper (생체 모방 종이 작동기 힘의 측정 및 모델링에 관한 연구)

  • Kang, Yu-Keun;Kim, Jae-Hwan;Jung, Woo-Chul;Song, Chun-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • Generally, characteristics of electromechanical actuators are coupled with the mechanical and the electrical properties. Important mechanical parameters of these actuators are the achievable force and displacement in the presence of electric field. These mechanical parameters are related to the stress and strain of the materials and the actuator geometry. This paper presents how to measure the blocked force by using the micro-balance. The blocked force is defined as the force produced by the transducer under an applied voltage when the tip is constrained to zero motion. Also, a theoretical force by using the cantilever beam model is calculated under elastic domain. From the sample of 4 cm $\times$ 1 cm $\times$ 20 $\mu$m, the blocked farce measured from the equipment is 20.3 $\mu$N at 8 V$_{DC}$. By comparing it with the theoretical value, 24.9 $\mu$N, the blocked force measurement is acceptable. The furce measurement is also investigated with different AC electric fields and the frequency.

  • PDF

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

Force Distribution of a Six-Legged Walking Robot with High Constant Speed

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-140
    • /
    • 2000
  • For a walking robot with high constant body speed, the dynamic effects of the legs on the transfer phase are dominant compared with other factors. This paper presents a new force distribution algorithm to maximize walkable terrain without slipping considering the dynamic effects of the legs on the transfer phase. Maximizing the walkable terrain means having the capability of walking on more slippery ground under the same constraint, namely constant body speed. A simple force distribution algorithm applied to the proposed walking model with a pantograph leg shows an improvement in the capability of preventing foot-slippage compared with one using a pseudo-inverse method.

  • PDF