• Title/Summary/Keyword: Mechanical etching

Search Result 400, Processing Time 0.024 seconds

Fabrication of Superoleophobic Surface with Anisotropic Wettability Using Silicon Wafer (실리콘 웨이퍼를 이용한 이방성의 젖음성을 가지는 초소유성 표면 제작)

  • Lee, Dong-Ki;Lee, Eun-Haeng;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • We fabricated grooved mushroom structures with anisotropic wettability on silicon substrates using basic MEMS processes. The geometry of these grooved mushroom structures could be changed by controlling the additional IPA solution during Si etching by TMAH solution. To understand anisotropic wettability, contact angles (CAs) of hexadecane droplets were measured in the orthogonal and parallel directions to grooved lines. The CA measurement results displayed anisotropic wetting on the grooved mushroom structures. However, specimens with $80{\mu}m$ distance between top layers displayed isotropic and superoleophobic wetting. This study demonstrates that the thickness of the top layer is more critical than the width or height of the ridge when determining the wettability of organic solvent. Despite the wide distance between top layers ($80{\mu}m$), the specimen with a thin top layer (100 nm) showed highly anisotropic wetting and low CA due to the pinning of droplets at the edge of the top layer.

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Chucking Method of Substrate Using Alternating Chuck Mechanism (반도체 기판 교차 파지 방법)

  • Ahn, Young-Ki;Choi, Jung-Bong;Koo, Kyo-Woog;Cho, Jung-Keun;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Typically, single-wafer wet etching is done by dispensing chemical onto the front and back side of spin wafer. The wafer is fixed by a number of chuck pins, which obstruct the chemical flow and would result in the incomplete removal of the remaining film, which can become a source of contamination in the next process. In this paper, we introduce a novel design of wafer chuck, in which chuck pins are groupped into two and each group of pins fixes the substrate alternatively. Two groups of chuck pins fix the high-speed spin substrate with non contact method using a magnetic material. The actual process has been executed to observe the effectiveness of this new wafer chuck. It was found that the new wafer chuck performed better than the conventional wafer chuck for removing the remaining film from the bevel and edge side of substrate.

  • PDF

Performance Analysis of a Vibrating Microgyroscope using Angular Rate Dynamic Model (진동형 마이크로 자이로스코프의 각속도 주파수 동역학적 모델의 도출 및 성능 해석)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • A microgyroscope, which vibrates in two orthogonal axes on the substrate plane, is designed and fabricated. The shuttle mass of the vibrating gyroscope consists of two parts. The one is outer shuttle mass which vibrates in driving mode guided by four folded springs attached to anchors. And the other is inner shuttle mass which vibrates in driving mode as the outer frame does and also can vibrate in sensing mode guided by four folded springs attached to the outer shuttle mass. Due to the directions of vibrating mode, it is possible to fabricate the gyroscope with simplified process by using polysilicon on insulator structure. Fabrication processes of the microgyroscope are composed of anisotropic silicon etching by RIE, gas-phase etching (GPE) of the buried sacrificial oxide layer, metal electrode formation. An eletromechanical model of the vibrating microgyroscope was modeled and bandwidth characteristics of the gyroscope operates at DC 4V and AC 0.1V in a vacuum chamber of 100mtorr. The detection circuit consists of a discrete sense amplifier and a noise canceling circuit. Using the evaluated electromechanical model, an operating condition for high performance of the gyroscope is obtained.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

The Characteristics for the Electrostatically Actuated z-Shaped Laterally Driven MEMS Switch (정전 구동 수평 거동 z-형 MEMS 스위치의 특성)

  • Hong, Young-Tack;Oh, Jae-Geun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2233-2235
    • /
    • 2000
  • We present the characteristics of microwave and mechanical behavior for the electrostatically actuated z-shaped laterally driven micriomachined CPW SPST(Single Pole Single Throw) Switch, which is for the application of the microwave communication systems. In this paper, we have aimed to maintain advantages. such as low insertion loss and low power consumption that the previously developed RF MEMS Switch has and minimize also stiction problem. enhance the microwave characteristics by etching of substrate beneath the switch, realize the pull-in voltage of below 30V. The optimized design parameters of the MEMS Switch can be selected by the analysis of the mechanical behavior and the use of ANSYS simulation method.

  • PDF

Relationships between Carrier Lifetime and Surface Roughness in Silicon Wafer by Mechanical Damage (기계적 손상에 의한 실리콘 웨이퍼의 반송자 수명과 표면 거칠기와의 관계)

  • 최치영;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in viewpoint of electrical and surface morphological characteristics in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay technique, atomic force microscope, optical microscope, wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage degree, the lower the minority carrier lifetime, and surface roughness, damage depth and density of oxidation induced stacking fault increased proportionally.

  • PDF

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

The economic benefit of combustible waste into energy: A contingent valuation study (Fe3C12 식각을 이용한 콘덴싱 보일러 잠열 열교환기의 응축 열전달 촉진)

  • Jang, J.H.;Ahn, J.;Shin, D.H.;Chung, T.Y.
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.307-311
    • /
    • 2013
  • Heating and hot water has accounted for 68% of Korea's household energy usage. Boiler makes up the bulk of the heating and hot water production. Hence a highly efficient boiler is needed in order to reduce energy consumption. A condensing boiler that recovers latent heat is known to be highly efficient. However, it is expensive and takes more space to necessitate research for improvement. In the present study, we investigated condensation heat transfer of a surface roughened by etching treatment. The etched plate showed 9.2% increase in heat transfer compared to original plate.

Development of MEMS-based Micro Turbomachinery (MEMS-based 마이크로 터보기계의 개발)

  • Park, Kun-Joong;Min, Hong-Seok;Jeon, Byung-Sun;Song, Seung-Jin;Joo, Young-Chang;Min, Kyoung-Doug;You, Seung-Mun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.169-174
    • /
    • 2001
  • This paper reports on the development of high aspect ratio structure and 3-D integrated process for MEMS-based micro gas turbines. To manufacture high aspect ratio structures, Deep Reactive Ion Etching (DRIE) process have been developed and optimized. Specially, in this study, structures with aspect ratios greater than 10 were fabricated. Also, wafer direct bonding and Infra-Red (IR) camera bonding inspection systems have been developed. Moreover, using glass/silicon wafer direct bonding, we optimized the 3-D integrated process.

  • PDF