• Title/Summary/Keyword: Mechanical etching

Search Result 400, Processing Time 0.025 seconds

Design and Fabrication of Electrostatic Inkjet Head using Silicon Micromachining Technology

  • Kim, Young-Min;Son, Sang-Uk;Choi, Jae-Yong;Byun, Do-Young;Lee, Suk-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • This paper presents design and fabrication of optimized geometry structure of electrostatic inkjet head. In order to verify effect of geometry shape, we simulate electric field intensity according to the head structure. The electric field strength increases linearly with increasing height of the micro nozzle. As the nozzle diameter decreases, the electric field along the periphery of the meniscus can be more concentrated. We design and fabricate the electrostatic inkjet heads, hole type and pole type, with optimized structure. It was fabricated using thick-thermal oxidation and silicon micromachining technique such as the deep reactive ion etching (DRIE) and chemical wet etching process. It is verified experimentally that the use of the MEMS inkjet head allows a stable and sustainable micro-dripping mode of droplet ejection. A stable micro dripping mode of ejection is observed under the voltages 2.5 kV and droplet diameter is $10\;{\mu}m$.

Fabrication of Metallic Nano-Filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

Fabrication of Single Crystal Silicon Micro-Tensile Test Specimens and Thin Film Aluminum Markers for Measuring Tensile Strain Using MEMS Processes (MEMS 공정을 이용한 단결정 실리콘 미세 인장시편과 미세 변형 측정용 알루미늄 Marker의 제조)

  • 박준식;전창성;박광범;윤대원;이형욱;이낙규;이상목;나경환;최현석
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 2004
  • Micro tensile test specimens of thin film single crystal silicon for the most useful structural materials in MEMS (Micro Electro Mechanical System) devices were fabricated using SOI (Silicon-on-Insulator) wafers and MEMS processes. Dimensions of micro tensile test specimens were thickness of $7\mu\textrm{m}$, width of 50~$350\mu\textrm{m}$, and length of 2mm. Top and bottom silicon were etched using by deep RIE (Reactive Ion Etching). Thin film aluminum markers on testing region of specimens with width of $5\mu\textrm{m}$, lengths of 30~$180\mu\textrm{m}$ and thickness of 200 nm for measuring tensile strain were fabricated by aluminum wet etching method. Fabricated side wall angles of aluminum marker were about $45^{\circ}~50^{\circ}$. He-Ne laser with wavelength of 633nm was used for checking fringed patterns.

Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching (DRIE 공정 변수에 따른 TSV 형성에 미치는 영향)

  • Kim, Kwang-Seok;Lee, Young-Chul;Ahn, Jee-Hyuk;Song, Jun Yeob;Yoo, Choong D.;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1028-1034
    • /
    • 2010
  • In the development of 3D package, through silicon via (TSV) formation technology by using deep reactive ion etching (DRIE) is one of the key processes. We performed the Bosch process, which consists of sequentially alternating the etch and passivation steps using $SF_6$ with $O_2$ and $C_4F_8$ plasma, respectively. We investigated the effect of changing variables on vias: the gas flow time, the ratio of $O_2$ gas, source and bias power, and process time. Each parameter plays a critical role in obtaining a specified via profile. Analysis of via profiles shows that the gas flow time is the most critical process parameter. A high source power accelerated more etchant species fluorine ions toward the silicon wafer and improved their directionality. With $O_2$ gas addition, there is an optimized condition to form the desired vertical interconnection. Overall, the etching rate decreased when the process time was longer.

Experimental Investigation of 2kW Class Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator with Cooling Temperature of -100 ℃ for Cryogenic Etching (초저온 식각을 위한 냉각용량 2kW 급 -100 ℃ 비가연성 혼합냉매 줄톰슨 냉각기의 실험적 고찰)

  • Jongmin Eun;Cheonkyu Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents the design and experimental analysis of a cryogenic refrigeration system for -100 ℃, primarily intended for semiconductor etching process. The refrigeration system utilizes non-flammable mixed refrigerant Joule-Thomson refrigeration cycle, incorporating a precooling stage to enhance overall performance. The selected refrigerants for the system include R1234yf for the precooling stage, and Ar, R14, R23 and R218 for the main cooling stage of the Joule-Thomson refrigeration cycle. Design results according to the system constraints and experimental results are discussed, including lowest evaporation temperature, compressor isentropic efficiency and overall pressure tendencies. The achieved refrigerant fraction from optimal design is Ar: R14: R23: R218 = 0.15: 0.4: 0.15: 0.3, indicating COP of 0.1118 at the isentropic compressor efficiency of 50%. The experimental result shows the developed system reaches steady state in approximately 3 hours.

  • PDF

A Study on the Mechanical Micro Machining System set-up and Applications (기계적 미세 가공 시스템 구성 및 응용 연구)

  • 제태진;이응숙;최두선;이선우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.934-937
    • /
    • 2001
  • It is well-known that the micro fabrication technology of micro parts are the high energy beam or silicon-based micro machining method such as LIGA Process, Laser machining, photolithography and etching technology. But, for fabricating complex 3-D structure it is better to use mechanical machining. This machining method by the mechanical machine tool with nanometer accuracy is getting attention in some field-especially micro optics machining such as grating, holographic lens, micro lens array, fresnel lens, encoder disk etc.. In this study, we survey the micro fabrication by mechanical cutting method and set up the mechanical micro machining system. And we carried out micro cutting experiments for micro parts with v-shape groove.

  • PDF

Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher (플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

Micro Channel Forming with Ultra Thin Metal Foil (초미세 금속 박판의 마이크로 채널 포밍)

  • Joo, Byung-Yun;Oh, Soo-Ik;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.