• Title/Summary/Keyword: Mechanical and electrical properties

Search Result 1,788, Processing Time 0.027 seconds

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

Thermal and Mechanical Properties of Ceramic Coated Al Bus Bar (세라믹 코팅 Al 부스바의 열적·기계적 특성)

  • Kwag, Dong-Soon;Baek, Seung-Myeong;Kwak, Min Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1651-1656
    • /
    • 2017
  • This paper deals with the thermal and mechanical properties of ceramic coating material for bus bars. A ceramic coated samples were prepared for the mechanical properties test. There are two types of samples. One is a square shape and the other is a busbar shape. Each sample was deteriorated for 30 days to compare the thermal and mechanical properties with the non-degraded samples. Two thermal properties tests are TGA and flammability tests, and four mechanical properties tests are drop impact test, cross cut, tensile test, and bend test. The ceramic coating material was never damaged by impact and did not separate from aluminum in the cross cut test. In the tensile test, the breakage of the insulating material did not occur until aluminum fractured, and the breakage of the insulating material did not occur until the maximum load in the bending test. The decomposition temperature (melting point) of the ceramic coating material was higher than that of other epoxy insulators. This ceramic coating material is nonflammable and it has excellent fire stability.

Mechanical and Electrical Properties Behavior Study of Overhead Conductor due to Forest Fire (산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동 연구)

  • Jang, Young-Ho;Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.108-109
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. The detailed will be given in the text.

  • PDF

Mechanical and Electrical Properties of Overhead Conductor due to Forest Fire (산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동)

  • Kim, Byung-Geol;Jang, Young-Ho;Kim, Shang-Shu;Han, Se-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1042-1048
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. Overhead conductors temperature were almostly 55$\sim$65% of ambient temperature. Tensile Strength decreased according to incerase of Forest Fire temperature. The detailed will be given in the text.

Electrical and Mechanical Properties of Silicone Rubber for High Voltage Insulation (고압절연용 실리콘고무의 전기특성 및 물성에 관한 연구)

  • Lee, J.H.;Ji, W.Y.
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 2002
  • This study was carried out to investigate the influences or the vinyl content of polydimethylsiloxane(PDMS) and type of silica on the electrical and mechanical properties of silicone rubber far high voltage insulation. When the content of vinyl group was increased, cross-linking density and hardness were increased, and tensile strength, volume resistivity and tracking resistance were improved. The mechanical and electrical properties of silicone rubber reinforced with fumed silica were higher than those of silicone rubber reinforced with precipitated silica. It was found that the electrical and mechanical properties of silicone rubber were influenced greatly by the water contents of silica.

Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku;Sung Yu-Taek;Han Mi-Sun;Lee Heon-Sang;Lee Sun-Jeong;Joo Jin-Soo;Kim Woo-Nyon
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2006
  • The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Mechanical and Electrical Properties of Aluminum Wires of ACSR Conductors due to Forest Fire (산불에 노출된 강심알루미늄연선 송전선 알루미늄 선재의 기계적 및 전기적 특성 거동)

  • Lee, Won-Kyo;Lee, Jung-Won;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.730-735
    • /
    • 2010
  • Forest fire can cause a serious damage to overhead conductors. Therefore, detailed investigation on the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is of critical importance in maintaining transmission line safely. This paper examines the changes of mechanical and electrical properties of flame exposed conductor. Tensile strength (TS) decreased according to increase of forest fire temperature and conductivity changed according to forest fire temperature. Specimens were aluminum conductors of aluminium conductor steel reinforced (ACSR) 410, 240, 480 $mm^2$. In this paper, the electrical and mechanical characteristics of forest fires exposed overhead conductors depending on the diameter of aluminum conductors are presented. It was possible to estimate the degree of deterioration caused by forest fires. The detailed results are given in the paper.

Mechanical, Electrical and Thermal Properties of Polymer Composites Containing Long Carbon Fibers and Multi-walled Carbon Nanotubes (탄소장섬유와 다중벽 탄소나노튜브가 혼입된 고분자 복합재료의 기계적, 전기적 및 열적 특성)

  • Min Su Kim;Ki Hoon Kim;Bo-kyung Choi;Jong Hyun Park;Seong Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • Mechanical, electrical and thermal properties of polymer composites can be improved simultaneously by incorporating carbon fibers (CFs), which are beneficial for improving the mechanical properties, and multi-walled carbon nanotubes (MWCNTs), which are advantageous for improving the conductive properties. In this study, MWCNTs were incorporated into carbon long fiber thermoplastic (CLFT), which has excellent mass production processability and excellent mechanical properties, to control electrical and thermal properties. The mechanical and electrical properties of the prepared composites were most significantly influenced by the amount of filler incorporated. On the other hand, the thermal properties were improved due to the formation of a filler network interconnected by the incorporation of MWCNTs. By adjusting the filler amount, filler composition, and filler network structure of MWCNT-incorporated CLFT, the mechanical, electrical, and thermal properties could be controlled.