DOI QR코드

DOI QR Code

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.)
  • Received : 2013.12.10
  • Accepted : 2013.03.06
  • Published : 2013.04.25

Abstract

Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

Keywords

References

  1. S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354, No. 6348, 1991, pp. 56-58 [DOI: http://dx.doi.org/10.1038/354056a0].
  2. H. L. Wang, J. T. Robinson, G. Diankov and H. J. Dai, "Nanocrystal Growth on Graphene with Various Degrees of Oxidation," Journal of the American Chemical Society, Vol. 132, No. 10, 2010, pp. 3270-3271 [DOI: http://dx.doi.org/10.1021/ ja100329d].
  3. Kim H., Abdala A. A., Macosko C. W.: Graphene/ polymer nanocomposites. Macromolecules, 43, 6515-6530 (2010) [DOI: http://dx.doi.org/10.1021/ma100572e].
  4. Kuilla T., Bhadra S., Yao D., Kim N. H., Bose S., Lee J. H.: Recent advances in graphene based polymer composites. Progress in Polymer Science, 35, 1350-1375 (2010) [DOI: http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005].
  5. Potts J. R., Dreyer D. R., Bielawski C. W., Ruoff R. S.: Graphenebased polymer nanocomposites. Polymer, 52, 5-25 (2011) [DOI: http://dx.doi.org/10.1016/j.polymer.2010.11.042].
  6. Rafiee M. A., Rafiee J., Wang Z., Song H., Yu Z-Z., Koratkar N.: Enhanced mechanical properties of nano - composites at low graphene content. ACS Nano, 3, 3884-3890 (2009) [DOI: http:// dx.doi.org/10.1021/nn9010472].
  7. S.Swain, et al, TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS "Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites" [DOI: http://dx.doi.org/10.4313/TEEM.2012.13.6.267].
  8. Geim A. K., Novoselov K. S.: The rise of graphene. Nature Materials, 6, 183-191 (2007) [DOI: http://dx.doi.org/10.1038/ nmat1849].
  9. Geim A. K.: Graphene: Status and prospects. Science, 324, 1530- 1534 (2009) [DOI: http://dx.doi.org/10.1126/science.1158877].
  10. Allen M. J., Tung V. C., Kaner R. B.: Honeycomb carbon: A review of graphene. Chemical Review, 110,132-145 (2010) [DOI: http:// dx.doi.org/10.1021/cr900070d].
  11. Sun Z., James D. K., Tour J. M.: Graphene chemistry: Synthesis and manipulation. The Journal of Physical Chemistry Letters, 2, 2425-2432 (2011) [DOI: http://dx.doi.org/10.1021/jz201000a].
  12. Kim J., Kim F., Huang J.: Seeing graphene-based sheets. Materials Today, 13, 28-38 (2010) [DOI: http://dx.doi.org/10.1016/ S1369-7021(10)70031-6].
  13. Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S.: Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924 (2010) [DOI: http://dx.doi.org/10.1002/adma.201001068].
  14. Wu J., Pisula W., Müllen K.: Graphenes as potential material for electronics. Chemical Review, 107, 718-747 (2007) [DOI: http://dx.doi.org/10.1021/cr068010r].
  15. Shao Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y.: Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 22, 1027-1036 (2010) [DOI: http://dx.doi.org/10.1002/elan.200900571].

Cited by

  1. Graphene and modified graphene-based polymer nanocomposites – A review vol.33, pp.12, 2014, https://doi.org/10.1177/0731684414524847
  2. Effect of Short-Term Water Exposure on the Mechanical Properties of Halloysite Nanotube-Multi Layer Graphene Reinforced Polyester Nanocomposites vol.9, pp.1, 2017, https://doi.org/10.3390/polym9010027
  3. Mechanical and Thermal Properties of Thermoset-Graphene Nanocomposites vol.301, pp.3, 2016, https://doi.org/10.1002/mame.201500335
  4. Environmental Stress Cracking Resistance of Halloysite Nanoclay-Polyester Nanocomposites vol.05, pp.03, 2017, https://doi.org/10.4236/wjet.2017.53033
  5. Effect of adding different amounts of graphite nanoplatelets on structural, thermal, mechanical and viscoelastic properties of vinylester based composites cured at 25°C 2017, https://doi.org/10.1002/pc.24283
  6. Morphology development and mechanical properties of unsaturated polyester resin containing nanodiamonds vol.66, pp.6, 2017, https://doi.org/10.1002/pi.5343