• 제목/요약/키워드: Mechanical alloy (Milling)

검색결과 147건 처리시간 0.022초

알루미늄 합금의 스파이럴 상향가공 시 절삭조건이 표면거칠기에 미치는 영향 (Effects of cutting condition on surface roughness in the spiral up milling of aluminum alloy)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.83-90
    • /
    • 2014
  • The spiral up milling of an aluminum alloy was performed in this study. In accordance with the cutting condition, the surface roughness behavior and significance of the research with regard to specific factors were analyzed. The cutting speed, feed, and depth of the cut were found to be statistically significant. A higher cutting speed improved the surface roughness. On the other hand, as the feed and depth of the cut increase, the surface roughness decreases. An interaction effect between the feed and depth of the cut was detected. According to the surface roughness in relation to the cutting conditions, the model showed non-linear behavior.

기계적 합금화 시료에서 미소상 피이크의 소멸현상 해석(II) (Detail analysis of the peak disappearance of minor phase in mechanically alloyed samples(II))

  • 김혜성
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.27-34
    • /
    • 2001
  • Refining of powder particles and their dissolution into the Al matrix during mechanical alloying(MA) were investigated by using X-ray diffraction(XRD) transmission electron microscopy (TEM) functions of alloy composition, milling time and ball to powder ratio(BPR). It is found that Ti particles less than 20nm are observed in a dark field image of mechanically alloyed Al-10wt%Ti whose XHD pattern exhibits no Ti peak. The observed change of lattice constant of AI indicates that about 1 wt%Ti can he solved in Al after MA for a long time, independent of alloy composition, milling time and BPR, suggesting that most of Ti particles arc retained in the Al matrix. It is concluded that the disappearance of XRD peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti Particles.

  • PDF

Improvement in Microstructure Homogeneity of Sintered Compacts through Powder Treatments and Alloy Designs

  • Hwang, K.S.;Wu, M.W.;Yen, F.C.;Sun, C.C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.824-825
    • /
    • 2006
  • Homogeneous microstructures of the PM compacts are difficult to attain when mixed elemental powders are used. This study examined the microstructures of pressed-and-sintered and MIM products that contain Ni and Mo.Ni-rich areas, which were lean in carbon and were soft and were found easily in regular specimens. Gaps or cracks near the Ni-rich or Mo-rich areas were also frequently observed. This problem worsened when Ni and Mo particles were large and were irregular in shape. By using ball milling treatment and ferroalloy powders, the microstructure homogeneity and mechanical properties were improved. The addition of 0.5wt%Cr further improved the distribution of Ni because Cr reduced the repulsion effect between nickel and carbon. With the elimination of Ni-rich areas, more bainites and martensites were formed and mechanical properties were significantly improved.

  • PDF

항온 Laser MCT(LAM) 복합 가공의 최적 가공 조건 해석 (A Study on the Analysis of Optimal Working Condition for Constant Temperature Laser MCT(LAM) Combined Machining)

  • 박정호;김귀남
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1197-1204
    • /
    • 2023
  • Ti-alloy, a high-strength alloy material among the materials used in aircraft that are trending toward lighter weight, is classified as a difficult-to-cut material that requires a lot of energy for cutting. Cutting in a high-temperature environment is considered one means of making this possible, and various studies have been conducted on it. In particular, research on LAM (Laser Assisted Machining (LAM)), which utilizes laser heating of the cutting area, is being actively conducted. Before processing of the milling cutter begins, the temperature is raised locally by the laser irradiated through the laser head carrier, and the resistance during milling is reduced. Therefore, in this paper, in order to derive such conditions, we performed heat transfer analysis according to transfer conditions and compared it with actually applied test data to use it to establish appropriate processing conditions.

방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료 (Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering)

  • 권한상
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작 (Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing)

  • 이정원;하석재;홍광표;조명우;김건희;윤길상;제태진
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.

기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조 (Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process)

  • 김경주;이길근;박익민
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.215-220
    • /
    • 2015
  • The effect of Al content on the processing of reaction-bonded $Al_2O_3$ (RBAO) ceramics using 40v/o ~ 80v/o Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting $Al_2O_3$-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting $Al_2O_3$-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at $1600^{\circ}C$, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon;Kim, Young Do;Lee, Kee-Ahn;Kim, Hwi-Jun
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2020
  • In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.