• Title/Summary/Keyword: Mechanical alloy (Milling)

검색결과 147건 처리시간 0.022초

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling)

  • 이준호;박성현;이상화;손승배;이석재;정재길
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

기계적합금화법(機械的合金化法)에 의(依)한 V-Al합금(合金)의 미세조직(微細組織) 변화(變化)에 관(關)한 연구(硏究) (A Study on Microstructure of Vanadium-Aluminum Alloy by Mechanical Alloying)

  • 최운;김하영;남승의
    • 한국주조공학회지
    • /
    • 제11권6호
    • /
    • pp.455-462
    • /
    • 1991
  • The formation of brittle intermetallic compound such as $VAl_3$ tends tp lower the toughness of V-Al alloys. Also, due to the high melting point of vanadium, it is difficult to make that alloy by previous ingot metallurgy method. To depress the technique has been adopted. The effect of particle size and milling time on the phase has been thoroughly studied. For mechanical alloying, SPEX mixed/mill has been used. The milling time and the composition of V and Al are varied to find the optimum condition of forming amorphous phase. The X-Ray Diffrection pattern, microstructure detection, microhandess test, experiments are carried out to analyze MA product. When the final step is reached, no lamellar-structure is detected. The steady state condition is observed after 8 hours and 10 hours milling for 15wt.%Al and 30wt.%Al alloy, respectively. The microhardness continuously increases up to 10 hours after then it remains constant.

  • PDF

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • 한국분말재료학회지
    • /
    • 제23권3호
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Al7050-T7451 소재의 밀링가공에서 반응표면법에 의한 가공성평가 및 가공안정화를 위한 절삭조건선정 (Investigation of Cutting Conditions for Stable Machining and Machinability Evaluation in Milling Process of Al7050-T7451 by Response Surface Methodology)

  • 구준영;조문호;김혁;김정석
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.284-290
    • /
    • 2014
  • Aluminum alloy is a core material for structural parts of aircraft and automobiles to reduce the weight and maintain high specific strength. This study evaluates the machinability and investigates the optimal cutting conditions considering the surface integrity and productivity for Al7050-T7451 milling. The machining variables considered are the feed per tooth, spindle speed, axial depth of the cut, and radial depth of the cut. The machinability evaluation of Al7050-T7451 is conducted by analyzing the cutting force signals, acceleration signals, AE signals, and machined surface conditions. The optimal cutting conditions are determined by analyzing the experimental results using response surface methodology for stable machining considering the productivity and surface integrity.

알루미늄 합금(Al6061-T6)의 마이크로밀링가공에서 버 발생과 신호 특성의 상관관계 분석 (Correlation Between Cutting Signal Characteristics and Microburr Formation in Micromilling of Al6061-T6 Alloy)

  • 김현중;구준영;윤지찬;이종환;김정석
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.401-409
    • /
    • 2016
  • The formation of micro-burrs in micro-milling processes causes several problems related to productivity and surface integrity. It should be minimized and suppressed by effective monitoring of the cutting conditions. This paper presents the correlation between the micro-burr length and cutting signals in the micro-milling process of an Al alloy (Al6061-T6). The acoustic emission (AE) signals and cutting force signals are acquired during the experiments. The characteristics of the cutting signals are obtained by analyzing the AE root mean square value and resultant cutting force. In addition, the micro-burr length is measured according to the cutting conditions by analyzing a scanning electron microscopy image of the machined surface. The results of this study can be used to enhance the surface quality of micro parts.

The structural and magnetic properties of $Ni_{45}Al_{45}C_{10}$ solid solution as a function of milling times

  • Tarigan, Kontan;Yoo, Yong-Goo;Yang, Dong-Seok;Kartika, Ni Luh Karina;Yu, Seong-Cho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2007년도 동계학술연구발표회 및 스핀트로닉스와 나노물리에관한 국제심포지움
    • /
    • pp.44-45
    • /
    • 2007
  • We have studied the formation of alloy for $Ni_{45}AL_{45}C_{10}$ as a function of milling times. This alloy was produced using mechanical alloying. The effect of milling time on local structural changes of $Ni_{45}AL_{45}C_{10}$ has been investigated by means of EXAFS. Both XRD and EXAFS patterns from mechanically alloyed $Ni_{45}AL_{45}C_{10}$ powder indicates the formation of solid solution. The variation of lattice parameter and particle sizes could be analyzed from the different of milling times. Magnetization was also measured by using VSM.

  • PDF

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Structure and Magnetic Properties of a Fe73.5Si13.5B9Nb3Cu1 Alloy Nanopowder Fabricated by a Chemical Etching Method and Milling Procedure

  • Hong, Seong-Min;Kim, Jeong-Gon;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.71-74
    • /
    • 2009
  • The magnetic and structural properties of FINEMET (the Hitachi product name of the Fe-Si-B-Nb-Cu alloy) nanopowder with a composition of $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ atomic percent were investigated after annealing, chemical etching, and mechanical milling. The primary and secondary crystallization temperatures were 523 and $550^{\circ}C$, respectively. The grain size of the particles was adjusted by annealing time. Optimally annealed particles exhibited a homogenous microstructure composed of nanometer-sized crystalline grains. The grain boundary of the annealed particles was etched preferentially by chemical etching. Chemically etched particles were broken at the grain boundary by high-energy ball milling. As a result, a nanometer-sized FINEMET powder with a uniform size of crystalline grains was fabricated.

고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성 (Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering)

  • 박상훈;우기도;김지영;김상미
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구 (A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy)

  • 김종민;구준영;전차수
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.