• Title/Summary/Keyword: Mechanical activation

Search Result 547, Processing Time 0.031 seconds

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Removal Characteristics of Soot and NO by Nonthermal Plasma and Radical in a Diesel Engine (비열플라즈마와 라디칼을 이용한 디젤엔진의 매연 및 NO 제거 특성)

  • Jang, Yeong-Jun;Choe, Seung-Hwan;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2002
  • We are facing the serious environmental pollution difficulties such as acid rain, green house effects, etc. The gaseous matter NOx, SOx, VOCs which are regarded as main factors for these current pollutions are mainly emitted from power plants and vehicles. Therefore several leading countries are regulating the emissions strictly, especially the exhaust emissions from a Diesel engine without an aftertreatment device. The objective of this study is to find out soot and NO removal characteristics focused on the emissions of a Diesel engine by using nonthermal plasma for each engine speeds and loads. Electrostatic precipitator(wire-to-plate type reactor) is used for soot removal. Radicals generated from outer air and put into a mixing chamber in the end of exhaust line are used for NO removal. Concentration of exhaust emissions is analyzed from the gas analyzer(KaneMay) and FTIR to estimate by-products.

Analysis of the Microstructure and Oxidation Behavior of Some Commercial Carbon Fibers

  • Kim, Dae-Ho;Kim, Bo-Hye;Yang, Kap-Seung;Bang, Yun-Hyuk;Kim, Sung-Ryong;Im, Hun-Kook
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.819-823
    • /
    • 2011
  • The relationship between the microstructure, mechanical properties, and oxidation behavior of pitch-, polyacrylonitrile (PAN)-, and Rayon-based carbon fibers (CFs) has been studied in detail. Three types of carbon fiber were exposed to isothermal oxidation in air and the weight change was measured by thermogravimetric analyzer (TGA) apparatus. After activation energy was gained according to the conversion at reacting temperature, the value of specific surface area and the surface morphology was compared, and the reaction mechanism of oxidation affecting development of pores of carbon fibers was examined. This study will lead to a new insight into the relationship between the microstructure and mechanical properties of carbon fibers.

New Approach to Investigate the Dynamic Relaxaton Process of Complex Peak in Mechanical and dielectric Characteristics of Anelastic Solids

  • Kim, Bong-Heup
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.1-5
    • /
    • 1998
  • Complex dynamic relaxation processes of mechanical as well as dielectric character in polymeric anelastic solids are closely related through the movement of molecular chain segment in morphological structure, and the morphology can easily be modified by the treatments such as mechanical drawing or irradiation, those of which result, in turn, the complicated change on the appearance of the observed complex relaxation peak. In order to extract any meaningful understanding from the modified appearance of the peak, the relaxation peak must be resolved into the sum of the dynamic single relaxation peaks, each of which can be characterized respectively by three factors such as activation energy, magnitude of peak height and peak point temperature on the temperature dependent characteristics.

  • PDF

Musculoskeletal Kinematics During Voluntary Head Tracking Movements in Primate

  • Park, Hyeonki;Emily Keshner;Barry W. Peterson
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • In this study we examined connections between vertebral motion and patterns of muscle activation during voluntary head tracking movements. A Rhesus (Maraca mulatta) monkey was trained to produce sinusoidal tracking movements of the head in the sagittal plane while seated. Radio-opaque markers were placed in the cervical vertebrae, and intramuscular patch electrodes were implanted to record from eight neck muscles. Videofluoroscopic images of cervical vertebral motion, and EMG (electromyographic) responses were simultaneously re-corded. Experimental results demonstrated that head and vertebrae moved synchronously and that motion occurred primarily at skull-C$_1$, C$\_$6/-C$\_$7/ and Csub 7/-C$_1$. Our findings illustrate that although the biomechanical constraints of each species may limit the number of solutions available, it is the task requirements that appear to govern CNS (central nervous system) selection of movement behaviors.

Laminar Diffusion Flame in the Reacting Mixing Layer (반응혼합층의 층류확산화염)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

Evaluation of Electrochemical and Mechanical Characteristics in MIG Welding Parts of Dissimilar Al Alloys for Ship (선박용 이종 알루미늄 합금 미그 용접부의 기계적 및 전기화학적 특성 평가)

  • Woo, Yong-Bin;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In the study, it was carried out dissimilar metal welding on materials for Al ship. The electrochemical and mechanical characteristics evaluated for specimen welded by ROBOT. The hardness of welding zone is lower than those of heat affected zone and base metal. At the result of tensile test, the specimen welded with ER5183 welding material presented excellent property compared with ER5556. The polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. At the Tafel experiments result, the corrosion density in welded with ER5183 welding material presented the lowest value.

Solid State Sintering of Micrometric and Nanometric WC-Co Powders

  • Escobar, J.A.;Campo, F.A.;Serrano, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.350-351
    • /
    • 2006
  • A solid stage sinterizacion model of the WC-Co is applied on this work. These results are compaired with the experimental data obtained for nanometric and micrometric sinter powder in an electric furnace and micrometric in a plasma reactor (using Abnormal Glow Discharge AGD). The correlations obtained allow the prediction of the sintering behavior in AGD for nanometric powder. The activation of the solid state sintering is shown with the decraease of the WC size and the use of AGD

  • PDF

Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.585-590
    • /
    • 2009
  • The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.