• Title/Summary/Keyword: Mechanical Ventilation System

Search Result 279, Processing Time 0.026 seconds

Respiratory Failure following Tetramine poisoning after Ingestion of Sea Snail: A Case Report (소라 섭취 후 테트라민 중독에 의한 호흡부전 1례)

  • Lee, Joo Hwan;Park, Jin Wook;Hong, Seong Jun;Jeon, Jae-Cheon;Jin, Sang-Chan
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.1
    • /
    • pp.42-46
    • /
    • 2020
  • Tetramine toxicity due to sea snail ingestion is generally mild and has a good prognosis. Tetramine toxicity acts on the acetylcholine receptor, affecting the neuromuscular junction and autonomic nervous system. A 78-year-old female patient visited the emergency room with vomiting and dyspnea after eating sea snails. At the time of admission, the vital signs recorded were 140/80 mmHg-105/min-24/min-36.5℃, and 90% oxygen saturation. Arterial blood test revealed hypercapnia (pCO2 58.2 mmHg) and respiratory acidosis (pH 7.213, HCO3- 22.5 mmol/L), whereas other blood tests showed no specific findings. Due to decreased consciousness and hypoxia, endotracheal intubation and mechanical ventilation were administered to the patient. Successful weaning was accomplished after 12 hrs, and the patient was discharged without any further complications. Although tetramine toxicity rarely results in acute respiratory failure due to paralysis of the respiratory muscle, caution is required whilst treating the patient.

An Experimental Study on the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 관한 실험적 연구)

  • Yoo Seong Yeon;Chung Min Ho;Kim Ki Hyung;Lee Je Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

Comparison of Cooling-Energy Performance Depending on the Economizer-Control Methods in an Office Building (이코노마이저 제어 방법에 따른 사무소 건물의 냉방 에너지 성능 비교)

  • Son, Jeong-Eun;Hyun, In-Tak;Lee, Jea-Ho;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.432-439
    • /
    • 2015
  • Current building procedures seek to minimize external air supplies to reduce the energy consumption of air conditioning, resulting in a high dependency on mechanical ventilation. We therefore studied an economizer-cycle system, whereby the introduction of external air saves energy. We analyzed different economizer-control methods, addressing mixed-air temperatures and outdoor-air fractions according to outdoor-air temperatures; also, we analyzed the energy consumption of the three economizer-cycle control types using detailed EnergyPlus simulation modeling. A differential enthalpy control method showed a lower energy consumption range from 5.8% to 6.2% than that of other methods during the simulated period. A differential dry-bulb control method showed a 12.7% lower energy consumption than the no-economizer method in the intermediate period, but also showed 7.1% more energy consumption during the summer period. When latent heat was not removed due to high summer humidity, we found a significant level of resultant energy consumption.

Identification of target subjects and their constraints for automated MEP routing in an AEC project

  • Park, SeongHun;Shin, MinSo;Kim, Tae wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.776-783
    • /
    • 2022
  • Since Mechanical, Electrical, and Plumbing(MEP) routing is a repetitive and experience-centered process that requires considerable time and human resources, if automated, design errors can be prevented and the previously required time and human resources can be reduced. Although research on automatic routing has been conducted in many industries, the MEP routing in AEC projects has yet to be identified due to the complexity of system configuration, distributed expertise, and various constraints. Therefore, the purpose of this study is to identify the target subjects for MEP routing automation and the constraints of each subject. The MEP design checklist provided by a CM company and existing literature review were conducted, and target subjects and constraints were identified through process observation and in-depth expert interviews for five days by visiting a MEP design company. The target subjects were largely divided into six categories: air conditioning plumbing, air conditioning duct, restroom sanitary plumbing, heating plumbing, and diagram. The findings from interviews show that work reduction and error reduction has the greatest effect on air conditioning plumbing while the level of difficulty is the highest in air conditioning duct and restroom sanitary plumbing. Major constraints for each subject include preventing cold drafts on air conditioning pipes, deviation in ventilation volume in air conditioning ducts, routing order on restroom sanitary plumbing, and separation distance from the wall on heating plumbing. In this way, subjects and constraints identified in this study can be used for MEP automatic routing.

  • PDF

An Analysis on the Major Parameter and the Relations of Pressure Difference Effect of Leakage Area in the Smoke-Control Zone (제연구역의 주요 매개 변수 및 누설 면적 변화를 고려한 차압 형성 관계 분석)

  • You, Woo Jun;Ko, Gwon Hyun;SaKong, Seong Ho;Nam, Jun-Seok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • This study is experimentally analyzed to extract the major parameters affecting the performance of the smoke-control system and the relations of pressure difference between vestibule and supply air pressure zone effect of supply mass flow rate and leakage area in the smoke-control zone. To obtain this, the mock-up building of three-story scale with a total of 10 compartments was constructed, and several apparatus were also installed for in-situ measurement of the ventilation flow rate, pressure difference between compartments, smoke defensive air velocity, the opening-closing force of door, etc. This article show that pressure difference in the smoke-control zone is significantly related with leakage area of vestibule in low pressure region, leakage area of supply air pressure in over pressure region and both of them in pressure control region when the pressure control range of damper is 45 Pa~55 Pa.

A study on the Characteristics of a Centrifugal Fan Vibration and Noise (Centrifugal Fan 송풍기의 진동.소음 특성에 관한 연구)

  • 김태형;김옥현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.999-1003
    • /
    • 1992
  • Because of low noise and small size with huge capacity, a centrifugal fan is widely used for ventilation, air-conditioner and so on, which are very near to human life. Because of the complexity of its vibration and noise generation mechanics, most of researches on them are based on experimental methods. This study is to characterize the centrifugal fan noise and vibration. It is considered that noise is composed of the structural vibration noise and the air flow induced aerodynamic noise. To decouple the structural vibration noise the centrifugal fan is masked with an adhesive tape, such that air blowing is prohibited thus only the structural vibration noise is extracted. The noise level and characteristics in the frequency domain are verified and compared with those of total mixed one. This study shows some significant results that the structural vibration noise has relatively narrow band power spectrum compared with the total mixed one and has a strong periodicity. The sound level is lowered about 5dB by the removal of air flow with the masked fan for an air-conditioner used in this study.

Smoke Exhaust Performance Prediction According to Air Supply and Exhaust Conditions for Shipboard Fires from a Human Safety Point of View (인명안전 관점에서 선박 화재 시 급·배기조건에 따른 배연성능 예측평가)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.782-790
    • /
    • 2016
  • When a fire occurs on a ship that has mechanical ventilation facilities, the air supply and exhaust systems directly effect smoke diffusion. And there is a high possibility that occupant's visibility will be harmed because of smoke. In this study, the effects and risks of air supply and exhaust systems with regard to smoke diffusion given a shipboard fire analyzed with a Fire Dynamic Simulator(FDS). Suggested measures are also provided for using air supply and exhaust systems more efficiently. The results showed that, when air supply and exhaust systems were both working at the time of a fire, rather than stopping these systems as previously encouraged, continuing to operate both was an effective measure to gain evacuation time. When a fire occurred and the exhaust system was operating, also starting the air supply system near the origin of the fire was another effective approach to gain evacuation time. However, when only the air supply system was operating and a fire occurred, the air supply system accelerated smoke diffusion, so it was necessary to stop the air supply system to detect smoke diffusion as much as possible.

Comparison of Imposed Work of Breathing Between Pressure-Triggered and Flow-Triggered Ventilation During Mechanical Ventilation (기계환기시 압력유발법과 유량유발법 차이에 의한 부가적 호흡일의 비교)

  • Choi, Jeong-Eun;Lim, Chae-Man;Koh, Youn-Suck;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.592-600
    • /
    • 1997
  • Background : The level of imposed work of breathing (WOB) is important for patient-ventilator synchrony and during weaning from mechanical ventilation. Triggering methods and the sensitivity of demand system are important determining factors of the imposed WOB. Flow triggering method is available on several modern ventilator and is believed to impose less work to a patient-triggered breath than pressure triggering method. We intended to compare the level of imposed WOB on two different methods of triggering and also at different levels of sensitivities on each triggering method (0.7 L/min vs 2.0 L/min on flow triggering ; $-1\;cmH_2O$ vs $-2cm\;H_2O$ on pressure triggering). Methods : The subjects were 12 patients ($64.8{\pm}4.2\;yrs$) on mechanical ventilation and were stable in respiratory pattern on CPAP $3\;cmH_2O$. Four different triggering sensitivities were applied at random order. For determination of imposed WOB, tracheal end pressure was measured through the monitoring lumen of Hi-Lo Jet tracheal tube (Mallincrodt, New York, USA) using pneumotachograph/pressure transducer (CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). Other data of respiratory mechanics were also obtained by CP-100 pulmonary monitor. Results : The imposed WOB was decreased by 37.5% during 0.7 L/min on flow triggering compared to $-2\;cmH_2O$ on pressure triggering and also decreased by 14% during $-1\;cmH_2O$ compared to $-2\;cmH_2O$ on pressure triggering (p < 0.05 in each). The PTP(Pressure Time Product) was also decreased significantly during 0.7 L/min on flow triggering and $-1\;cmH_2O$ on pressure triggering compared to $-2\;cmH_2O$ on pressure triggering (p < 0.05 in each). The proportions of imposed WOB in total WOB were ranged from 37% to 85% and no significant changes among different methods and sensitivities. The physiologic WOB showed no significant changes among different triggering methods and sensitivities. Conclusion : To reduce the imposed WOB, flow triggering with sensitivity of 0.7 L/min would be better method than pressure triggering with sensitivity of $-2\;cm\;H_2O$.

  • PDF

A Study of the Indoor Thermal Environment in Apartment Buildings in Freezing Weather Operation of Heat Recovery Ventilator by CFD Simulation (CFD를 이용한 열회수형 환기장치 운전에 따른 혹한기 공동주택의 실내 열환경 검토)

  • Kim, Chang-Yeon;Park, Jong-Il;Kim, Dong-Gyu;Shin, Byong-Hwan;Kum, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.293-299
    • /
    • 2015
  • In Korea, it is the law that an apartment building which consists of over 100 households must have a ventilation system installed, either natural or mechanical. The heat recovery ventilator (HRV) is great way to reduce energy consumption. In this research we confirmed that based on site's construction plan and existing diffuser form, performed purpose CFD which simulates operation in temperatures below $-5^{\circ}C$ to circumstances of installation of an HRV in an apartment. As a result of this research we found that when the diffuser's aperture area was adjusted, the distribution of air temperature and residence time of air was more equally distributed and air temperature was higher, compared to when the diffuser has an identical aperture area. We also found that we are able to increase even more air temperature and air distribution of air temperature and residence time of air was even more equally distributed when run in parallel with a splitter damper.

Indoor distribution characteristics of airborne bacteria in pig buildings as influenced by season and housing type

  • Kim, Ki Youn;Ko, Han Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.742-747
    • /
    • 2019
  • Objective: A concentration of airborne bacteria generated from swine houses is recognized to be relatively higher than other work places and it is essential to optimally manage it to prevent farmers' respiratory diseases. This study was conducted to assess the distribution characteristics of airborne bacteria in swine houses located at South Korea. Methods: A total 27 pig buildings of the enclosed type operated with mechanical ventilation system by a side wall fan and deep-pit manure system with slats were surveyed. Air samples were collected at 1.0 m above the middle floor in pig housing room. A six-stage viable particulate cascade impactor was used to identify the distribution of the sizes of particles in diameter. Results: Seasonal mean levels of airborne bacteria in the housing rooms of gestation/farrowing pigs, nursery pigs and growing/fattening pigs were 3,428(${\pm}1,244$) colony forming unit $(cfu)/m^3$, $8,325({\pm}3,209)cfu/m$, and $13,254({\pm}6,108)cfu/m^3$ for spring; $9,824({\pm}2,157)cfu/m^3$, $18,254({\pm}5,166)cfu/m^3$, and $24,088({\pm}9,274)cfu/m^3$ for summer; $1,707({\pm}957)cfu/m^3$, $4,258({\pm}1,438)cfu/m^3$, and $8,254({\pm}2,416)cfu/m^3$ for autumn; and $2,322({\pm}1,352)cfu/m^3$, $6,124({\pm}1,527)cfu/m^3$ and $12,470({\pm}4,869)cfu/m^3$ for winter, respectively. Conclusion: Concentrations of airborne bacteria according to pig housing type were highest in growing/fattening housing room followed by nursery housing room and gestation/farrowing housing room. In terms of seasonal aspect, the pig building showed the highest levels of airborne bacteria in summer followed by spring, winter and autumn. The respirable airborne bacteria which are ranged between 0.6 and $4.7{\mu}m$ accounted for approximately 60% compared to total airborne bacteria regardless of pig housing type.