• Title/Summary/Keyword: Mechanical Reliability

Search Result 2,376, Processing Time 0.033 seconds

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

Optimal Maintenance Cycle Plan of Aerial Weapon System Radar Considering Maintenance Cost (운영유지 비용을 고려한 항공무기체계 레이다의 최적정비주기 설정 방안)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2018
  • Purpose: The purpose of this study is to propose a method to calculate the optimal preventive maintenance cycle of radar used in the aviation weapon system of ROKAF. Methods: A hybrid model is used to estimate the optimal preventive maintenance cycle in a system that can perform condition based predictive maintenance (CBPM) through continuous diagnosis. The failure data of the radars operating in the military were used to calculate the reliability. Results: According to the research results, the reliability threshold of the radar began to decrease after 5 flights, and decreased rapidly after 12 flights. Since the second check, costs have continued to decline. Conclusion: A method is proposed to determine the cycle of optimal preventive maintenance of radar within operational budget through modeling results between reliability limit and cost for radar. The results can be used to determine the optimal preventive maintenance cycle and frequency of various avionics equipment.

ESPI를 이용한 에어콘용 시로코팬의 신뢰성평가

  • 김경석;강기수;양승필
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.253-260
    • /
    • 2002
  • This paper propose Electronic Speckle Pattern Interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. However, it is difficult to apply previous method, accelerometer to the devices with lightweight and complex geometry. ESPI, non-contact measurement technique is applied for vibration analysis of a sirocco fan inside air conditioner. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI is able to supply effective design information.

  • PDF

Research on characteristic analysis and reliability improvement of check valve for turbo compressor (터보 압축기용 체크 밸브의 특성 분석과 신뢰성 개선)

  • Kim, Kyung-Soo;Kang, Bo-Sik;Lee, Seung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1381-1386
    • /
    • 2008
  • In this study, we studied failure cause of check valve through analysing characteristic of it used in turbo compressor. We researched how to improve to reduce chaterring occurrence which is cause of main failure mode and suggested how to improve reliability of check valve through it.

  • PDF

Weld Zone Design Verification of Structure which is Receiving Internal Pressure (내부 압력을 받는 구조물의 용접 부 설계 검증)

  • Park, Jung-Sun;Im, Jong-Bin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1425-1429
    • /
    • 2003
  • In this study, when structure which is combined by welding is receiving internal pressure, finite element analysis to confirm stability of structure and reliability of welding part is achieved. And we analyze the results. Also, if stability of the structure and reliability of the welding part are not defined, research that look for method to change design to receive stability and reliability is achieved.

  • PDF

Reliability of the redundant system with dependent human error (인간실수를 고려한 중복시스템의 신뢰도 분석)

  • 김명기;장순흥
    • Journal of the Ergonomics Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.11-15
    • /
    • 1982
  • There is the possibility that human error during testing and maintenance brings about the failure of the system, the reliability of which depends on mechanical failure and human error. This paper deals with the calculation of the reliability of the redundant system with the dependent hunman error through Karnaugh Map. Two cases are considered. One is the reli- ability of the system neglecting the test interval of each component and the other is that considering the test interval of each component.

  • PDF

Reliability of System in Packages

  • Gao, Shan;Hong, Ju-Pyo;Kim, Tae-Hyun;Choi, Seog-Moon;Yi, Sung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2006.10a
    • /
    • pp.67-73
    • /
    • 2006
  • A system in package (SiP) generally contains a variety of systems such as analog, digital, optical and micro-electro-mechanical systems, integrated in a system-level package connected through a substrate. However, there are many electrical and mechanical reliability issues including the reliability issue for embedded structures. A mismatch of thermal coefficients of expansion among packaging materials and devices can lead to warping or delamination in the package. In this study, the effect of material properties of underfill, such as Young's modulus and CTE, are investigated through FEM simulation. Experimental investigation on the warpage of the package is also carried out to verify the simulation results. The results show that the reliability of the system in package is closely related to the material properties of underfill. The results of this study provide a good guidance for the material selection when designing the system in package.

  • PDF

Application of the Combined Techniques for Reliability Improvement on Machine Design Process: Case Study (기계설계 과정의 신뢰성 향상을 위한 혼합 기법 응용: 사례연구)

  • Choi, Jang-Jin;Lim, Ik-Sung;Koo, Il-Sub;Park, Sung-Jun;Kim, Tae-Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2014
  • In the mechanical design process various types of errors are bound to occur. In order to prevent such mechanical malfunctions and decrease number of instances of errors, various technique are utilized. The purpose of this research is to demonstrate the effectiveness of the combined service Blueprint and FMEA (Failure Mode and Effect Analysis) by applying such method to machine process. The results are as follows: First, modification can be obtained by discovering the failure mode hidden within the inner side of the blueprint. Second, issues within the company are found when conducting the machine design process that is not visible from the outside. Therefore, potential errors can be effectively resolved by preventing failure mode in advance and eventually high quality of the product could be obtained as well as its reliability.

First-Order Perturbation Solutions for Liquid Pool Spreading with Vaporization (누출된 액체의 증발과 확산에 관한 1차 섭동해)

  • Kim, Myung-Bae;Do, Kyu-Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.287-291
    • /
    • 2011
  • We solve the simple physical model for liquid pool spreading with vaporization semi-analytically for the first time, using perturbation techniques. The results are compared with those obtained using numerical methods. We use the evaporation rate per unit area as a perturbation parameter, and first-order solutions are obtained for continuous and instantaneous release. The two solutions are nearly identical with respect to the pool radius. The pool volumes are nearly the same at the early stage of the spread and then start to diverge.

A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure (내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구)

  • Chong, Young-Whan;Chai, Hui-Seok;Sung, In-Je;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.