• Title/Summary/Keyword: Mechanical Power

Search Result 7,588, Processing Time 0.435 seconds

A Study on the Dynamic Analysis and Control Algorithm for a Motor Driven Power Steering System

  • Yun, Seokchan;Han, Changsoo;Wuh, Durkhyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The power steering system for vehicles is becoming essential for supporting the steering efforts of the drivers, especially for the parking lot maneuver Although hydraulic power steering has been widely used for years, its efficiency is not high enough. The problems associated with a hydraulic howe. steering system can be solved by a motor driven power steering (MDPS) system. In this study, a dynamic model and a control algorithm for the ball screw type of MDPS system have been derived and analyzed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, two derivative gains are added to the conventional power boosting control algorithm. Through simulations, the effects of the control gain on the steering angle gain were verified in the frequency domain. The steering returnability and steering torque phase lag in on-center handling test were also evaluated in the time domain.

Review of Virtual Power Plant Applications for Power System Management and Vehicle-to-Grid Market Development (전력시스템 관리 및 Vehicle to Grid 전력시장 개발을 위한 가상발전소의 활용방안)

  • Jin, Tae-Hwan;Park, Herie;Chung, Mo;Shin, Ki-Yeol;Foley, Aoife;Cipcigan, Liana
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2251-2261
    • /
    • 2016
  • The use of renewable energy sources and energy storage systems is increasing due to new policies in the energy industries. However, the increase in distributed generation hinders the reliability of power systems. In order to stabilize power systems, a virtual power plant has been proposed as a novel power grid management system. The virtual power plant plays includes different distributed energy resources and energy storage systems. We define a core virtual power plant technology related to demand response and ancillary service for the cases of Korea, America, and Europe. We also suggest applications of the proposed virtual power plant to the vehicle-to-grid market for restructuring national power industries in Korea.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

Structural Integrity Evaluation for Interference-fit Flywheels in Reactor Coolant Pumps of Nuclear Power Plants

  • Park June-soo;Song Ha-cheol;Yoon Ki-seok;Choi Taek-sang;Park Jai-hak
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1988-1997
    • /
    • 2005
  • This study is concerned with structural integrity evaluations for the interference-fit flywheels in reactor coolant pumps (RCPs) of nuclear power plants. Stresses in the flywheel due to the shrinkage loads and centrifugal loads at the RCP normal operation speed, design overspeed and joint-release speed are obtained using the finite element method (FEM), where release of the deformation-controlled stresses as a result of structural interactions during rotation is considered. Fracture mechanics evaluations for a series of cracks assumed to exist in the flywheel are conducted, considering ductile (fatigue) and non-ductile fracture, and stress intensity factors are obtained for the cracks using the finite element alternating method (FEAM). From analysis results, it is found that fatigue crack growth rates calculated are negligible for smaller cracks. Meanwhile, the material resistance to non-ductile fracture in terms of the critical stress intensity factor (K$_{IC}$) and the nil-ductility transition reference temperature (RT$_{NDT}$) are governing factors for larger cracks.

Random Vibration Analysis of Portable Power Supply Container for Radar With U.S. Military Standards (미 군사규격을 적용한 레이더 전력공급용 이동식 컨테이너의 Random Vibration 해석)

  • Do, Jae-Seok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.71-77
    • /
    • 2022
  • In times of war or emergencies, weapon systems, such as radars, must receive stable power. This can be achieved using improved onboard portable power systems made of steel containers. However, a breakdown can occur in the event of random vibration during transportation via a vehicle or train. Electrical-power shortages or restrictions pose a significant threat to security. In this study, Composite Wheeled Vehicle(CWV) data and rail cargo data with Acceleration Spectral Density(ASD), specified in MIL-STD-810H METHOD 514.8, were interpreted as input data of the three-axis random vibration method using ANSYS 19.2. Modal analysis was performed up to 500 Hz, and deformations in modes 1 to 117 were calculated to utilize all ASD data. The maximum equivalent stress in the three-axis direction was obtained using a random vibration analysis. Similarly, the margin of safety was calculated using the derived equivalent stress and material properties. Overall, the analysis verified that the portable container designed for the power supply system satisfied the required vibration demands.

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources (다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가)

  • Kwon, Kilsung;Park, Byung Ho;Kim, Dukhan;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.513-518
    • /
    • 2015
  • Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.

Design and Performance Verification of Compound CVTs with 2K-H I type Differential Gear

  • Kim Yeon-Su;Park Jae-Min;Choi Sang-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.770-781
    • /
    • 2006
  • This paper defined design constraints for the compound CVTs (continuously variable trans-missions) by combining power-circulation-mode CVTs and power-split-mode CVTs, which were proposed for connecting 2K-H I-type differential gear to V-belt-type CVU (Continuously Variable Unit). The design constraints are the necessary and sufficient conditions to avoid geometrical interferences among elements in the compound CVTs, and to guarantee smooth assembly between the power-circulation-mode CVT and power-split-mode CVT Two com-pound CVTs were designed and manufactured in accordance with the design constraints. With these compound CVTs, theoretical analysis and performance experiments were conducted. The results showed that the design constraints were valid and effective design method, and that the designed compound CVTs had the improved performance.

Analysis of Operational Economic Efficiency in a Cogeneration Power Plant (열병합 발전소의 운전경제성 분석에 관한 연구)

  • Kim, Gun-Hoe;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.5 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This study presents an operational technique to maximize the profit of a cogeneration power plant under cost-based pool power market. In benefit side energy sale profit, heat sale profit, and supplementary fund profit for electric power industry are included and the changeable cost was considered in cost side. The profit of a cogeneration power plant is varied enormously by the operation conditions, and constraint conditions. The result of this case study can be used as a reference to a cogeneration power plant under the same power trading system.

  • PDF

A study on the Engine Downsizing Using Mechanical Supercharger

  • Bae Jae-Il;Bae Sin-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2321-2329
    • /
    • 2005
  • One means of fulfilling $CO_2$ emission legislation is to downsize engines by boosting their power using turbochargers or mechanical superchargers. This reduces fuel consumption by decreasing the engine displacement. When a turbocharger, which is preferable to a mechanical supercharger in terms of fuel efficiency, is used, there is insufficient availability of exhaust gas energy at low engine speeds, resulting in an unfavorable engine response. Therefore, mechanically driven superchargers have increased in popularity due to their quick response to changing speeds in the transient phase. However, since a mechanical supercharger obtains its driving power from the engine, it is difficult to decrease its fuel consumption. This remains a large negative factor for superchargers, despite their excellent dynamic performance. This study aims to develop a power control concept to improve the fuel economy of a mechanical screw supercharger, which could then be used for engine downsizing.