• Title/Summary/Keyword: Mechanical Model

Search Result 12,958, Processing Time 0.036 seconds

Modelling and dynamic analysis of electro-mechanical system in machine tools (공작기계 시스템의 모델링과 동적 특성 분석)

  • 박용환;신흥철;문희성;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.991-994
    • /
    • 1995
  • Recent trend in machine tools is pursuing the high precision and high speed facility and its architecture is being more complicated. With this tendency, it is required the more precise dynamic analysis of electro-mechanical system in machine tools. In this paper, the exact mathematical model of feed and spindle system of a typical machine tools was induced. The feed system is modeled as 7-mass system including the workpiece and the spindle system as 4-mass system. The simulation results show that the induced model depicts the characteristics of real system very well. The effects of each mechanical element to dynamic motion of a machine are analyzed by simulation with the induced model. It ia anticipated that the induced model can be used in the analysis of various machine architectures and in the design stage of new machine tools.

  • PDF

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

Improvement of the Performance of Hysteresis Compensation in SMA Actuators by Using Inverse Preisach Model in Closed - Loop Control System

  • Ahn Kyoung-Kwan;Kha Nguyen-Bao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.634-642
    • /
    • 2006
  • The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed-loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

A Sensitivity Analysis of Centrifugal Compressors Empirical Models

  • Baek, Je-Hyun;Sungho Yoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1292-1301
    • /
    • 2001
  • The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.

  • PDF

Atomization Characteristics and Prediction Accuracy of LISA-DDB Model for Gasoline Direct Injection Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1177-1186
    • /
    • 2004
  • In this paper, the spray atomization characteristics of a gasoline direct-injection injector were investigated experimentally and numerically. To visualize the developing spray process, a laser sheet method with a Nd :YAG laser was utilized. The microscopic atomization characteristics such as the droplet size and velocity distribution were also obtained by using a phase Doppler particle analyzer system at the 5 ㎫ of injection pressure. With the experiments, the calculations of spray atomization were conducted by using the KIVA code with the LISA-DDB breakup model. Based on the agreement with the experimental results, the prediction accuracy of LISA-DDB breakup model was investigated in terms of the spray shapes, spray tip penetration, SMD distribution, and axial mean velocity. The results of this study provides the macroscopic and microscopic characteristics of the spray atomization, and prediction accuracy of the LISA-DDB model.

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.

An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part I: Coupled Integrated Material Removal Modeling (화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part I: 연성 통합 모델링)

  • Seok, Jong-Won;Oh, Seung-Hee;Seok, Jong-Hyuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.35-40
    • /
    • 2007
  • An integrated material removal model considering thermal, chemical and contact mechanical effects in CMP process is proposed. These effects are highly coupled together in the current modeling effort. The contact mechanics is employed in the model incorporated with the heat transfer and chemical reaction mechanisms. The mechanical abrasion actions happening due to the mechanical contacts between the wafer and abrasive particles in the slurry and between the wafer and pad asperities cause friction and consequently generate heats, which mainly acts as the heat source accelerating chemical reaction(s) between the wafer and slurry chemical(s). The proposed model may be a help in understanding multi-physical interactions in CMP process occurring among the wafer, pad and various consumables such as slurry.

  • PDF

An Education Model of a Nano-Positioning System for Mechanical Engineers

  • Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1702-1715
    • /
    • 2006
  • The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed.