• Title/Summary/Keyword: Mechanical Failure

Search Result 3,003, Processing Time 0.027 seconds

Factors Determining the Timing of Tracheostomy in Medical ICU of a Tertiary Referral Hospital

  • Park, Young-Sik;Lee, Jin-Woo;Lee, Sang-Min;Yim, Jae-Joon;Kim, Young-Whan;Han, Sung-Koo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.6
    • /
    • pp.481-485
    • /
    • 2012
  • Background: Tracheostomy is a common procedure for patients requiring prolonged mechanical ventilation. However, the timing of tracheostomy is quite variable. This study was performed to find out the factors determining the timing of tracheostomy in medical intensive care unit (ICU). Methods: Patients who were underwent tracheostomy between January 2008 and December 2009 in the medical ICU of Seoul National University Hospital were included in this retrospective study. Results: Among the 59 patients, 36 (61.0%) were male. Median Acute Physiology And Chronic Health Evaluation (APACHE) II scores and Sequential Organ Failure Assessment scores on the admission day were 28 and 7, respectively. The decision of tracheostomy was made on 13 days, and tracheostomy was performed on 15 days after endotracheal intubation. Of the 59 patients, 21 patients received tracheostomy before 2 weeks (group I) and 38 were underwent after 2 weeks (group II). In univariate analysis, days until the decision to perform tracheostomy (8 vs. 14.5, p<0.001), days before tracheostomy (10 vs. 18, p<0.001), time delay for tracheostomy (2.1 vs. 3.0, p<0.001), cardiopulmonary resuscitation (19.0% vs. 2.6%, p=0.049), existence of neurologic problem (38.1% vs. 7.9%, p=0.042), APACHE II scores (24 vs. 30, p=0.002), and $PaO_2/FiO_2$ <300 mm Hg (61.9% vs. 91.1%, p=0.011) were different between the two groups. In multivariate analysis, APACHE II scores${\geq}20$ (odds ratio [OR], 12.44; 95% confidence interval [CI], 1.14~136.19; p=0.039) and time delay for tracheostomy (OR, 1.97; 95% CI, 1.11~3.55; p=0.020) were significantly associated with tracheostomy after 2 weeks. Conclusion: APACHE II scores${\geq}20$ and time delay for tracheostomy were associated with tracheostomy after 2 weeks.

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.

Data Deduplication Method using PRAM Cache in SSD Storage System (SSD 스토리지 시스템에서 PRAM 캐시를 이용한 데이터 중복제거 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.117-123
    • /
    • 2013
  • In the recent cloud storage environment, the amount of SSD (Solid-State Drive) replacing with the traditional hard disk drive is increasing. Management of SSD for its space efficiency has become important since SSD provides fast IO performance due to no mechanical movement whereas it has wearable characteristics and does not provide in place update. In order to manage space efficiency of SSD, data de-duplication technique is frequently used. However, this technique occurs much overhead because it consists of data chunking, hasing and hash matching operations. In this paper, we propose new data de-duplication method using PRAM cache. The proposed method uses hierarchical hash tables and LRU(Least Recently Used) for data replacement in PRAM. First hash table in DRAM is used to store hash values of data cached in the PRAM and second hash table in PRAM is used to store hash values of data in SSD storage. The method also enhance data reliability against power failure by maintaining backup of first hash table into PRAM. Experimental results show that average writing frequency and operation time of the proposed method are 44.2% and 38.8% less than those of existing data de-depulication method, respectively, when three workloads are used.

Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Mohamad, Hisham;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.

Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis (파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구)

  • Ku, Garam;Lee, Songjune;Kim, Kuksu;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.314-320
    • /
    • 2017
  • A pressure relief valve is generally used to prevent piping systems from being broken due to high pressure gas flows. However, the sudden pressure drop caused by the pressure relief valve produces high acoustic energy which propagates in the form of compressible acoustic waves in the pipe and sometimes causes severe vibration of the pipe structure, thereby resulting in its failure. In this study, internal aerodynamic noise due to valve flow is estimated for a simple contraction-expansion pipe by combining the LES (Large-Eddy Simulation) technique with the wavenumber-frequency analysis, which allows the decomposition of fluctuating pressure into incompressible hydrodynamic pressure and compressible acoustic pressure. In order to increase the convergence, the steady Reynolds-Averaged Navier-Stokes equations are numerically solved. And then, for the unsteady flow analysis with high accuracy, the unsteady LES is performed with the steady result as the initial value. The wavenumber-frequency analysis is finally performed using the unsteady flow simulation results. The wavenumber-frequency analysis is shown to separate the compressible pressure fluctuation in the flow field from the incompressible one. This result can provide the accurate information for the source causing so-called acoustic-induced-vibration of a piping system.

Aseptic Humeral Nonunion: What Went Wrong? What to Do? A Retrospective Analysis of 20 Cases

  • Kim, Jinil;Cho, Jae-Woo;Cho, Won-Tae;Cho, Jun-Min;Kim, Namryeol;Kim, Hak Jun;Oh, Jong-Keon;Kim, Jin-Kak
    • Journal of Trauma and Injury
    • /
    • v.29 no.4
    • /
    • pp.129-138
    • /
    • 2016
  • Purpose: Due to recent advances in internal fixation techniques, instrumentation and orthopedic implants there is an increasing number of humeral shaft fracture treated operatively. As a consequence, an increased number nonunion after operative fixation are being referred to our center. The aim of this study is to report the common error during osteosynthesis that may have led to nonunion and present a systematic analytical approach for the management of aseptic humeral shaft nonunion. Methods: In between January 2007 to December 2013, 20 patients with humeral shaft nonunion after operative procedure were treated according to our treatment algorithm. We could analysis x-rays of 12 patients from initial treatment to nonunion. In a subgroup of 12 patients the initial operative procedure were analyzed to determine the error that may have caused nonunion. The following questions were used to examine the cases: 1) Was the fracture biology preserved during the procedure? 2) Does the implant construct have enough stability to allow fracture healing? Results: In 19 out of 20 patients have showed radiographic evidence of union on follow up. One patient has to undergo reoperation because of the technical error with bone graft placement but eventually healed. There were 2 cases wherein the treatment algorithm was not followed. All patients had problems with mechanical stability, and in 13 patients had biologic problems. In the analysis of the initial operative fixation, only one of 12 patients had biologic problems. Conclusion: In our analysis, the common preventable error made during operative fixation of humeral shaft fracture is failure to provide adequate stability for bony union to occur. And with these cases we have demonstrated a systematic analytic management approach that may be used to prevent surgeons from reproducing the same fault and reduce the need for bone grafting.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Optimal Sensor Placement of Boundaries and Robustness Analysis for Chemical Release Detection and Response of Near Plant (주변 사업장의 화학물질 확산 감지와 대응을 위한 경계면의 센서배치 최적화 및 강건성 분석)

  • Cho, Jaehoon;Kim, Hyunseung;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.104-111
    • /
    • 2016
  • Recently, the quantities of chemical material are increasing in chemical industries. At that time, release accident is increasing due to aging of equipment, mechanical failure, human error, etc. and industrial complexes found community properties in a specific area. For that matter, chemical release accident can lead to hight probability of large disaster. There is a need to analyze the boundaries optimal sensor placement calculated by selecting release scenarios through release condition and wether condition in a chemical process for release detection and response. This paper is to investigate chlorine release accident scenarios using COMSOL. Through accident scenarios, a numerical calculation is studied to determine optimized sensor placement with weight of detection probability, detection time and concentration. In addition, validity of sensor placement is improved by robustness analysis about unpredicted accident scenarios. Therefore, this verifies our studies can be effectively applicable on any process. As mention above, the result of this study can help to place mobile sensor, to track gas release based concentration data.

A Case of Cavitary Lung Lesion as a Consequence of Smoke Inhalation Injury (흡입화상 치료과정에서 생긴 공동성 폐 병변)

  • Shin, Hyun Won;Kim, Cheol Hong;Eom, Kwang Seok;Park, Yong Bum;Jang, Seung Hun;Kim, Dong Gyu;Lee, Myung Goo;Hyun, In-Gyu;Jung, Ki-Suck;Lee, Eil Seong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.5
    • /
    • pp.564-570
    • /
    • 2006
  • Toxic gases and soot deposition as a consequence of smoke inhalation can cause direct injury to the upper and lower airways and even to the lung parenchyma. A delay in proper and prompt therapy can be detrimental to critically ill burn patients with an inhalation injury. Therefore, serial chest radiography is an important diagnostic tool for pulmonary complications during treatment. The radiographic findings of the chest include normal, consolidation, interstitial and alveolar infiltrates, peribronchial thickening, atelectasis, cardiogenic and non-cardiogenic pulmonary edema, and a pneumothorax as acute complications of smoke inhalation. In addition, bronchiectasis, bronchiolitis obliterans and pulmonary fibrosis can occur as late complications. We encountered a case of 44-year-old male who presented with acute lung injury after an inhalation injury. He required endotracheal intubation and mechanical ventilation due to respiratory failure. He was managed successfully with conservative treatment. Later, a cavitary lesion of the left upper lobe was observed on the chest radiography and computed tomography, which was complicated by massive hemoptysis during the follow-up. However, the cavitary lesion disappeared spontaneously without any clinical consequences.