• 제목/요약/키워드: Mechanical Efficiency

검색결과 4,920건 처리시간 0.031초

블로워 구성 변경에 따른 상압형 자동차용 고분자전해질형 연료전지 시스템의 효율 특성 연구 (Study on the Characteristics of Low-pressure Automotive Polymer Electrolyte Membrane Fuel Cell System Efficiency with Blower Configuration)

  • 김일중;이정재;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.181-189
    • /
    • 2018
  • Polymer electrolyte membrane fuel cell (PEMFC) system receives great attention as a promising power device for automotive applications. For the wide commercialization, the efficiency and performance of automotive PEMFC system should be further improved in terms of total system (stack and balance of plant [BOP]). Air supply module, which is a major part of the BOP, greatly affects the efficiency of automotive PEMFC system. In this paper, a systematic study on the low-pressure automotive PEMFC system was made in an attempt to enhance the net system efficiency. This study mainly presents an investigation of the effect of blower configuration (1-blower and 2-blower) on the net system efficiency of automotive PEMFC system. For this purpose, the effect of operating pressure and cathode stoichiometry on the system efficiency was investigated with stack temperature under the fixed net system power condition. Results indicate that 1-blower system is better in system efficiency over 2-blower system under an air stoichiometry of 2. However, 2-blower system is better in system efficiency under an air stoichiometry of 3. The simulation results show that the optimum operating strategy needs to be established for various blower system configurations considering blower performance maps.

증기 터빈 노즐 베인의 두께 변화와 유량별 등엔트로피 효율 변화에 관한 수치해석 (A Numerical Investigation on the Isentropic Efficiency of Steam Turbine Nozzle Stage with Different Nozzle Vane Thickness and Mass Flow Rate)

  • 이종현;박희성;정종윤;김준섭;정예림;박성원
    • 대한기계학회논문집B
    • /
    • 제41권10호
    • /
    • pp.685-691
    • /
    • 2017
  • 증기 질량 유량의 변화에 따른 증기 터빈 노즐 단의 등엔트로피 노즐 효율을 계산하였다. 증기상태에 관한 압축성 Navier-Stokes 방정식을 기반으로 삼차원 수치해석 모델이 개발되었다. 두 가지의 삼차원 노즐 형상으로 압력, 온도, 속도, 마하수, 그리고 Markov 에너지 손실 계수가 계산되었다. 노즐 블레이드의 두께가 15mm에서 45mm로 증가함에 따라 최대 효율의 질량 유량은 0.9kg/s에서 1.6kg/s로 증가하였으며 최대 등엔트로피 효율은 각각 96.66%, 97.32%로 계산되었다. 질량 유량에 따른 등엔트로피 노즐 효율과 Markov 에너지 손실 계수를 계산하여 Markov 에너지 손실 계수와 등엔트로피 노즐 효율이 선형적 반비례 관계가 있음을 규명하였다.

충돌형 Quadlet 인젝터의 연소성능 예측에 관한 실험적 연구 (An experimental study for the prediction of combustion performance of the Unlike Impinging Quadlet Injector)

  • 김종욱;박희호;한재섭;김선진;김유
    • 한국추진공학회지
    • /
    • 제3권4호
    • /
    • pp.44-50
    • /
    • 1999
  • Unlike impinging Quadlet injector(OOOF type)에 대한 혼합효율, 혼합특성속도, 혼합특성속도효율을 연소성능을 예측하기 위해 비연소 실험을 통하여 구하였다. 모의 추진제는 물($H_2$O)와 케로신($CH_{1.97}$)을 사용하였고, 혼합상관인자로써 산화제, 연료 분류의 운동량비를 사용하였다. 인젝터 분무특성을 파악하기 위해 오리피스(orifice) 각 hole에 대한 유량계수, 분무형상, 질량분포 획득이 수행되어졌다. 연구 결과, 침투깊이는 혼합효율, 혼합특성속도, 혼합특성속도 효율에 영향을 미침을 알 수 있었다. 또한, 혼합효율 및 혼합특성속도 효율은 MR=1.67(TMR=2.5)에서 87%로 최대값을 가지며 산화제 과잉상태보다 연료 과잉상태에서 더 큰 감소율을 보였다.

  • PDF

연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계 (Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation)

  • 잡반티엔;이영덕;김영상;쿠엔;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

F급 가스터빈의 압력비 증가 시 운전데이터를 이용한 열효율 변동 예측 (Prediction of the Thermal Efficiency at Increased Pressure Ratio in an F-Class Gas Turbine with Operating Data)

  • 박준철;허기무;윤성훈;문윤재;유호선;이재헌
    • 플랜트 저널
    • /
    • 제10권3호
    • /
    • pp.39-44
    • /
    • 2014
  • 국내 S복합발전본부의 150 MW급 가스터빈 축류압축기(18단)에서 저압단(1~9단)을 교체하여 압축기의 압력비를 기존 13.5에서 증가시킬 때 가스터빈 열효율을 예측하였다. 압력비 13.5일 때의 운전자료로 구한 압축기 단열효율과 터빈 단열효율을 적용하여 압력비 14.2에서 터빈일이 최대가 되는 압력비인 18.2까지 압력비를 1씩 증가하면서 열효율을 예측하였다. 압력비 증가 시 이론 열효율은 각 압력비에 대하여 각각 36.95%에서 38.6%까지 예측되었다. 압축기 저압단 교체 후 압력비가 16.2으로 증가되었을 때 실시한 성능시험 결과 열효율은 35.11%였다. 압력비 16.2일 때의 이론 열효율 37.87%와 비교하여 7.86% 범위에서 일치하였다. 압축기 교체 전 압력비 13.5일 때의 운전자료로 구한 압축기 단열효율과 터빈 단열효율을 이용하여 압력비 증가 시의 열효율을 성능시험 열효율의 7.86%내에서 예측할 수 있다.

  • PDF

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.

터빈 블레이드 형상 곡면에서의 막냉각 효율 특성 (The Characteristics of Film-Cooling Effectiveness on a Turbine-Blade-Shaped Surface)

  • 윤순현;류원택;김동건;김대성;김귀순
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.384-393
    • /
    • 2002
  • The effects of hole expansion angle and the arrangement of nozzles on a film cooling system for a turbine-blade-shaped surface were experimentally investigated. Liquid crystal with flue-temperature correlation and an image processing system were employed to evaluate surface temperature. Distributions of cooling effectiveness were then presented to figure out the change of heat transfer characteristics with different geometric conditions of cooling-holes. It was found thats the averaged cooling efficiency on the suction surface was maximum with 10 degree of the cooling hole expansion angle. It was also shown that the averaged cooling efficiency on the pressure surface and the averaged cooling efficiency for dual array case were not affected by the hole expansion angle.

Quality Enhancement of Falcataria-Wood through Impregnation

  • SUMARDI, Ihak;DARWIS, Atmawi;SAAD, Sahriyanti;ROFII, Muhammad Navis
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.722-731
    • /
    • 2020
  • The purpose of this research is to determine the efficiency of impregnation using phenol formaldehyde resin to enhance Falcataria wood's stability and better mechanical properties. Impregnation process was carried out after moisture content stabilized at 12% on samples with a dimension of 20 mm × 20 mm × 300 mm at various concentrations and pressure time. Dimensional stability was evaluated by thickness swelling (TS) and anti-swelling efficiency (ASE) and the young's modulus was conducted according to BS 573. The mechanical properties and dimensional stability of impregnated wood were evaluated. Dimensional stability and mechanical properties of Falcataria wood were successfully increased after impregnation. PF impregnation can improve the mechanical properties and the density from 0.26 g/㎤ to 0.30 g/㎤ even with only 10% of weight percent grain. Dimensional stability increases with increasing resin concentration and time pressure. The highest increase in mechanical properties was found at a higher concentration of PF. The penetration of PF into the wood's cell darkens the color of impregnated wood.

엇회전식 축류 펜의 공력 특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Flow Fan)

  • 최진용;조이상;조진수;원유필
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.201-210
    • /
    • 2002
  • Experiments were done for performance and flow characteristics of a counter-rotating axial flow fan. Performance curves of a counter-rotating axial flow fan were obtained and compared by varying the blade pitch angles. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe and a slanted hot-wire. The velocity profiles between the hub and tip of the fans were measured and analyzed at the peak efficiency point. The peak efficiency of the counter-rotating axial flow fan was improved about 15% respectively, compared with the single rotating axial fan. The single rotating axial flow fan showed relatively law efficiency due to the swirl velocities behind rotor exit which produced pressure losses. The counter-rotating axial flow fan showed that the swirl velocity generated by the front rotor was eliminated by the rear rotor and the associated dynamic pressure is recovered in the from of the static pressure rise.

하지 착용형 외골격 로봇의 효율적 보행패턴 생성 및 에너지 효율성 검증 (Gait Pattern Generation for Lower Extremity Exoskeleton Robot and Verification of Energy Efficiency)

  • 김완수;이승훈;유재관;백주현;김동환;한정수;한창수
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.346-353
    • /
    • 2012
  • The purpose of this study is to verify the energy efficiency of the integrated system combining human and a lower extremity exoskeleton robot when it is applied to the proposed gait pattern. Energy efficient gait pattern of the lower limb was proposed through leg function distribution during stance phase and the dynamic-manipulability ellipsoid (DME). To verify the feasibility and effect of the redefined gait trajectory, simulations and experiments were conducted under the conditions of walking on level ground and ascending and descending from a staircase. Experiments to calculate the metabolic cost of the human body with or without the assistance of the exoskeleton were conducted. The energy consumption of the lower extremity exoskeleton was assessed, with the aim of improving the efficiency of the integrated system.