• Title/Summary/Keyword: Mechanical Efficiency

Search Result 4,938, Processing Time 0.034 seconds

Selection of Alternative Cleaning Agents for Ultrasonic Cleaning Process in Remanufacturing of Used Laser Copy Machine (중고 레이저 복합기의 재제조 공정에서 초음파세정을 위한 대체 세정제의 선정)

  • Park, Yong-Bae;Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2011
  • In this study, evaluation tests for cleaning performance of various cleaning agents and selection of optimal ultrasonic cleaning parameters were executed to develop an efficient cleaning process in remanufacturing of laser copy machine. Cleaning performance tests were executed with 8 cleaning agents (A~H) to remove the contaminants of oil-ink, toner particles, and shoe polish. Physical properties and foamability tests were also applied. For 3 types of contaminants, cleaning agent G showed superior cleaning performance compared to agent A which has being used at a remanufacturing of laser copy machine in Korea. With cleaning agents selected in pre-tests, ultrasonic cleaning tests were executed to remove real contaminants on the parts of used digital laser copy machine parts. Cleaning agent G at 28 kHz ultrasonic frequency showed faster cleaning performance compared to agent A and other frequencies. The productivity and economic efficiency in remanufacturing of laser copy machine are expected to increase by adapting agent G and 28 kHz frequency at ultrasonic cleaning process.

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

Cognitive Perception of an Eco-friendly Public Transportation : Using Principal Component Analysis (친환경 대중교통 수단에 대한 인지적 특성 비교 분석 : 주성분분석을 활용하여)

  • Kwon, Yeongmin;Kim, Suji;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The existing transportation system, which is based on internal combustion engines, is rapidly being converted to electrification. Thus, eco-friendly public transportation with high transportation efficiency will continue to spread throughout the market in the near future. The purpose of this study is to compare and analyze the cognitive characteristics of passengers redgarding the technical and social factors of various public transportation means to help a successful introduction of eco-friendly public transit. Through a survey questionnaire (N=485), seven factors of seven transportation modes were evaluated and analyzed using principal component analysis. As a result, it is confirmed that potential passengers have high expectations for the eco-friendliness and city image of the eco-friendly buses. Also, it is confirmed that eco-friendly buses are superior in cleanliness and ride comfort than diesel buses. Given the study's results, this study identifies the cognitive characteristics of passengers regarding eco-friendly public transportation. We hope that these results will be used as basic information for image positioning and improved service with the use of eco-friendly transportation.

Pozzolanicity of Calcined Sewage Sludge with Calcination and Fineness Conditions (소성조건 및 분말도에 따른 소성하수슬러지(CSS)의 포졸란 특성)

  • So, Hyoung-Seok;So, Seung-Young;Khulgadai, Janchivdorj;Kang, Jae-Hong;Lee, Min-Hi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This study discussed the pozzolanic properties of calcined sewage sludge (CSS) according to calcination and fineness conditions. The chemical and mineralogical analysis of CSS according to calcination temperature and time were carried out and compared with that of the existing pozzolanic materials such as fly-ash, blast furnance slag and meta-kaolin. Various mortars were made by mixing those CSS and $Ca(OH)_2$ (1:1 wt. %), and their compressive strength and hydrates according to experimental factors such as fineness of CSS and curing age were also investigated in detail. The results show clearly the potentiality of calcined sewage sludge (CSS) as an admixture materials in concrete, but the CSS should be controlled by calcination temperature and time, and fineness etc. In this experimental condition, the calcination temperature of $800^{\circ}C$, calcination time of 2 hours and fineness of $5,000cm^2/g$ were optimum conditions in consideration of the mechanical properties and economic efficiency of CSS. The compressive strength of CSS mortars was higher than that of fly-ash mortars and blast furnace slag mortars, especially at the early ages. Then, the utilization of CSS in construction fields was greatly expected.

A Experimental Study on the Determination of Construction method of Controled Low-strength Material Accelerated Flow Ability Using Surplus Soil for Underground Power Line (지중송전관로용 급결 유동성 뒤채움재의 시공법 설정에 관한 실험적 연구)

  • Oh, Gi-Dae;Kim, Dae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.84-93
    • /
    • 2010
  • Compaction of backfill material of Underground power lines is difficult, especially under pipeline. so it could cause structural problem because of low compaction efficiency. So various methods have been taken to solve the problem and one of them is CLSM(Controled low-strength material accelerated flow ability). But In other countries, these are already in progress for a long time to research and development and recently on practical steps. But, in our country, study for only general structures, not for underground power line structure that is being constructed at night rapidly. In this study, we performed property tests and indoor & outdoor test (3 cases). The tests showed flow ability reached at the limit construction(160 mm) flowability by 9 to 15 minute after starting to mix, and construction buoyant is lowering after placing CLSM by 70 % of theoretical buoyant that is calculated by unit weight of material. In this paper, we performed indoor tests and outdoor tests to estimate mechanical properties and to suggest construction method(using batch plant, setting spacer at 1.8 m and placing at 2m) for CLSM that using surplus soil. And the test showed good results for construction quality, workability and structure safety.

  • PDF

Re-establishment of occlusal plane in a patient with a failed implant prosthesis (실패한 임플란트 보철수복물을 가진 환자의 교합평면 재설정)

  • Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.141-153
    • /
    • 2018
  • A non-physiological occlusal plane caused by continuous tooth loss, occlusal wear, and failure of a prosthesis may result in an unattractive appearance and functional problems, such as reduced masticatory efficiency and occlusal interference. Therefore, when undertaking prosthetic treatment for edentulous patients or patients with a collapsed occlusal plane, it is important to establish an occlusal plane that is compatible with masticatory function. The patient in this case report had undergone restoration of a completely edentulous maxilla using an implant-supported fixed prosthesis. On follow-up examination in the following 6 years, mechanical complications were observed in the existing implant prosthesis, including porcelain chipping, occlusal wear, and screw loosening. Moreover, due to occlusal wear and supraeruption of the opposing anterior teeth, as well as loss of some posterior teeth, the occlusal plane had collapsed. Following diagnosis, the patient underwent full mouth rehabilitation, involving additional implant installation in edentulous sites, recreation of the existing prosthesis, and prosthetic restoration of all remaining teeth.

Characteristics of Lithium Metal Secondary Battery Using PAN Gel-electrolyte Mixed with TiO2 Ceramic Filler (TiO2 Ceramic Filler가 혼합된 젤상의 PAN 고분자 전해질을 이용한 리튬금속 이차전지의 특성)

  • Lim, Hyo-Sung;Kim, Hyung-Sun;Cho, Byung-Won;Lee, Tae-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.106-110
    • /
    • 2002
  • Gel-type polyacrylonitrile(PAN) polymer electrolytes have been prepared using ethylene carbonate(EC), propylene carbonate(PC) and dimethyl carbonate(DMC) plasticizer, $LiPF_6$ salt and $TiO_2$ ceramic filler. Electrochemical properties, such as electrochemical stability, ionic conductivity and compatibility with lithium metal and mechanical properly of polymer electrolytes were investigated. Charge/discharge performance of lithium secondary battery using these polymer electrolytes were investigated. The maximum load that the polymer electrolyte resists increased about two times as a result of adding $TiO_2$ in the polymer electrolyte containing EC and PC. Polymer electrolyte containing EC, PC and $TiO_2$ also showed ionic conductivity of $2\times10^{-3} S/cm$ at room temperature and electrochemical stability window up to 와 4.5V. Polymer electrolyte containing EC, PC, and $TiO_2$ showed the most stable interfacial resistance of $130\Omega$ during 20 days in the impedance spectra of the cells which were constructed by lithium metals as electrodes. Lithium metal secondary battery which employed $LiCoO_2$ cathode, lithium metal anode and $TiO_2$-dispersed polymer electrolyte showed $90\%$ of charge/discharge efficiency at the 1C rate of discharge.

Performance analysis of a cooling system with refrigerant in a marine absorption refrigerator (선박용 흡수식 냉동기의 냉매적용 냉각 시스템 성능 분석)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.282-287
    • /
    • 2016
  • Recently in order to protect the ocean environment and to reduce energy consumption, shipbuilders have been developing highly economized ships. This research analyzed the possibility of adopting the onshore absorption refrigerator to offshore ships having a cooling system with refrigerant by using the waiste heat of the engine jacket cooling water instead of compression refrigerators. The results showed that R236fa could be a suitable medium for absorbing the heat of the absorber and condenser in an absorption refrigerator. The cooling system using R236fa achieved a high COP of 0.798, which is 15% and 5% higher than an air cooling system with a cooling tower and a water cooling system with a heat exchanger, respectively. The cooling system with R236fa achieved high efficiency with a 25% reduction in flow rate of LiBr solution and only 15.7% flow rate of cooling medium as compared to the water cooling system. The heating of sea water by the engine jacket water flowing out from the generator can prevent the crystallization of LiBr solution due to the low temperature of sea water.

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW

  • Hejzlar, Pavel;Petroski, Robert;Cheatham, Jesse;Touran, Nick;Cohen, Michael;Truong, Bao;Latta, Ryan;Werner, Mark;Burke, Tom;Tandy, Jay;Garrett, Mike;Johnson, Brian;Ellis, Tyler;Mcwhirter, Jon;Odedra, Ash;Schweiger, Pat;Adkisson, Doug;Gilleland, John
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.731-744
    • /
    • 2013
  • Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR) which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ~30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1) no reprocessing plants need to be built, 2) a reduced number of enrichment plants need to be built, 3) reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4) less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste burden. This paper describes the origins and current status of the TWR development program at TerraPower, LLC. Some of the areas covered include the key TWR design challenges and brief descriptions of TWR-Prototype (TWR-P) reactor. Selected information on the TWR-P core designs are also provided in the areas of neutronic, thermal hydraulic and fuel performance. The TWR-P plant design is also described in such areas as; system design descriptions, mechanical design, and safety performance.