• 제목/요약/키워드: Mechanical Characteristic

검색결과 2,543건 처리시간 0.028초

알루미늄 5456-H116 합금에 대하여 최적 마찰교반 프로세싱 조건 규명 및 기계적 특성 평가 (Evaluation of Mechanical Characteristic and Investigation on Optimum Condition in Friction Stir Processing for 5456-H116 Al Alloy)

  • 박재철;김성종
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.13-20
    • /
    • 2009
  • Friction stir welding(FSW) was developed as a new solid state welding technique by The Welding Institute (TWI). On the basis of FSW, a new processing technique, friction stir processing (FSP), has recently been developed. FSP has been applied to cast aluminum alloy to modify the microstructure to enhance mechanical characteristic. FSP is a new solid state processing technique for microstructural modification in metallic materials. FSP has been applied to aluminum alloy to modify the microstructure to enhance mechanical characteristic. In this study, we investigated optimum condition friction stir processing with the evaluation of mechanical characteristic for 5456-H116 Al alloy. The mechanical characteristics of base metal similar with in 15 mm/min, 250 RPM with full screw probe. This condition is concluded that optimum friction stir processing condition. The result of this investigation will be able to application for repair of welding part for aluminum ship.

Hydrodynamic performance of a pump-turbine model in the "S" characteristic region by CFD analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1017-1022
    • /
    • 2015
  • Specific hydrodynamic characteristic of pump-turbine during the start and load rejection process of generating mode causes anomalous increase of water pressure, along with large machine vibration, called "S" characteristic. The aim of this study is to understand and explain the hydrodynamic performance of pump-turbine at "S" characteristic region by using a model of pump-turbine system. The operation in the condition of runway and low discharge in a typical "S" characteristic curve may become unstable and complex flow appears at the passage of guide vane and impeller. Therefore, velocity and pressure distribution are investigated to give an all-sided explanation of the formation and phenomenon of this characteristic, with the assistance of velocity triangle analysis at the impeller inlet. From this study, the internal flow and pressure fluctuation at the normal, runway and low discharge points are explored, giving a deep description of hydrodynamic characteristic when the pump-turbine system operates with "S" characteristic.

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

모직물의 태에 관한 연구(1) ―실의 구성이 역학량에 미치는 영향― (Study on the Hand of Wool Fabrics(1) ―Effects of Yarn Structural Parameters on Mechanical Characteristics―)

  • Kim, Duk Ly
    • 한국염색가공학회지
    • /
    • 제6권4호
    • /
    • pp.54-61
    • /
    • 1994
  • The study has been conducted to investigate the relationship between yarn structural parameters such as diameter, twist multiplier and linear density, and mechanical properties of yarns measured by KES-F System. Each mechanical characteristic values per tex have non-linear relationship to the increment of yarn diameter, but as the linear density has increased, the mechanical characteristic values except for the bending characteristics have decreased linearly. It is, however, difficult to analyze obviously on the effects of twist multiplier even though the bending and the shear characteristic values were inclined to decrease. The effect of dyeing has also considered. The results are showing that yarn-dyed samples had higher effects than top-dyed ones on the mechanical characteristics.

  • PDF

MEMS CMP에서 모니터링 시스템을 이용한 슬러리 특성 (The Surry Characteristic Using Monitoring System in MEMS CMP)

  • 박성민;정석훈;박범영;이상직;정원덕;장원문;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.573-574
    • /
    • 2006
  • The planarization technology of Chemical-mechanical polishing(CMP), used for the manufacturing of multi-layer various material interconnects for Large-scale Integrated Circuits (LSI), is also readily adaptable as an enabling technology in MicroElectroMechanical System (MEMS) fabrication, particularly polysilicon surface micromachining. However, general LSI device CMP has partly distinction aspects, the pattern scale and material sorts in comparison with MEMS CMP. This study performed preliminary CMP tests to identify slurry characteristic used in general IC device. The experiment result is possible to verify slurry characteristic in MEMS structure material.

  • PDF

특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석 (A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation)

  • 강윤형;안현종;김정수
    • 한국추진공학회지
    • /
    • 제24권6호
    • /
    • pp.85-92
    • /
    • 2020
  • 200 N급 기체메탄-액체산소 소형로켓엔진의 연소실 특성길이 1.37 m, 1.71 m, 2.06 m에 대한 연소성능 분석을 위해 지상연소시험을 수행하였다. 로켓엔진의 주요 성능 변수로 정상상태에서의 추력, 비추력, 특성속도 등을 획득하였으며, 연소시험을 통해 확인한 성능특성을 CEA 해석으로부터 구한 이론성능과 비교 및 분석하였다. 연소성능에 대한 특성길이의 영향을 관찰한 결과, 최적의 특성길이는 1.71 m와 2.06 m사이에 존재하는 것이 확인되었다.

히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구 (An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink)

  • 윤성운;김재열;고가진
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.

극저온 환경에서 스트레인 게이지의 게이지상수 및 변형률 측정에 관한 연구 (The Characteristic Test for Gage Factors of Strain Gages in Cryogenic Environment)

  • 김갑순;주진원
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2205-2213
    • /
    • 1993
  • The characteristic test for gage factors of temperature self-compensated strain gages at cryogenic temperature is presented. By joining the international round robin test on electrical strain gages at cryogenic temperatures, the gage factors of three kinds of widely-used strain gages are obtained at the room temperature, the temperatures of liquid nitrogen and liquid helium. The calibration system which produce precise bending strain is by mechanical loading at cryogenic temperature. This paper also presents the creep characteristic of strain gages at maximum strain level.

응력과 온도에 따른 폴리카보네이트(PC)의 크리프특성 (Creep Characteristic of the Polycarbonate(PC) at Various Stresses and Temperatures)

  • 강석춘;이용원
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.78-85
    • /
    • 2010
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic polymers, Polycarbonate(PC) which is used broadly for engineering polymer, as it has excellent mechanical and thermal properties compared to other polymers, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PC at room temperature is 85 % of tensile strength. which is higher than PE (75%)at room temperature. Also the creep limits decreased exponentially as the temperatures increased, up to 50 % of the melting point($267^{\circ}C$). Also the first and third stage among the three creep stages was non-existent nor was there any rupture failure which occurred for many metals.

초소형 금형소재의 기계적 특성평가 (Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies)

  • 강재훈;이현용;이낙규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF