• Title/Summary/Keyword: Measuring machine

Search Result 969, Processing Time 0.027 seconds

Modeling of functional surface using Polynomial Regression (다항식회귀분석을 이용한 기능성곡면의 모델링)

  • 윤상환;황종대;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.376-380
    • /
    • 2002
  • This research presents modeling of a functional surface which is a constructed free-formed surface. The modeling introduced in this paper adopts polynomial regression that is utilizing approximating technique. The measured data are obtained from measuring with Coordinate Measuring Machine. This paper introduces efficient methods of Reverse Engineering using Polynomial Regression.

  • PDF

Sample Size Determination and Evaluation of Form Errors

  • Chang, Sung Ho;Kim, Sunn Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.85-98
    • /
    • 1994
  • In current coordinate measuring machine practice, there are no commonly accepted sample sizes for estimating form errors which have a statistical confidence. Practically, sample size planning is important for the geometrical tolerance inspection using a coordinate measuring machine. We determine and validate appropriate sample sizes for form error estimation. Also, we develop form error estimation methods with certain confidence levels based on the obtained sample sizes in various form errors: straightness, flatness, circularity, and cylindericity.

  • PDF

Aspherical Lens Design and Development of Spherical Aberration Measuring System by use of Spherical Aberration (구면 수차를 이용한 비구면 렌즈의 설계와 수차 측정 장치 개발)

  • Park, Kyu-Yeol;Kim, Han-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.175-180
    • /
    • 2007
  • In this paper, an aberration free aspherical lens is designed and machined by new design method and the spherical aberration measuring system is developed. It confirmed the propriety of new design method by measuring optical characteristics of machined lens with the new measuring system. The system could measure a spherical aberration quantitatively by using CCD camera, laser, collimator and so on.

Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data

  • Tseng, Tzu-Liang Bill;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-139
    • /
    • 2014
  • This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE) with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC). Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mi-tutoyo coordinate measuring machine (CMM) on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.

A Study on the Measurement and Evaluation of LSC Roundness by Index Head (INDEX HEAD를 이용한 절대 진원도의 측정 평가에 관한 연구)

  • Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.18-26
    • /
    • 1991
  • A study on the measuring and evaluation of LSC(Least Square Center) roundness was carried out. The experimental set-up was made by index head and indicator, and the measuring data were compensated by a developed computer program. The results obtained are as follows : 1) An index head can conveniently be used to measure LSC roundness. 2) A program for calculating LSC roundness is developed. 3) Without a high quality roundnes measuring apparatus, LSC roundness can be measured and calculated by using index head and the developed program in machine shop as well as in a measuring room

  • PDF

Polishing Characteristics and Development of Automatic Die Polishing Machine by Liquid Honing (액체호닝에 의한 금형 자동 사상기계개발 및 가공 특성)

  • 김재도;류기덕;홍정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.162-168
    • /
    • 2000
  • The automatic die polishing machine by liquid honing has been developed and experimented on the surface of machined die. The goal of development in the automatic die polishing machine by liquid honing is to increase the accuracy and the productivity in die polishing. To reach this goal, the polishing machine consists of the automatic measuring device for contour of die, the nozzle and pumping system to spray the powder mixed with liquid, and the 3-axis guides. Before polishing, the measuring device with a semiconductor laser scans the surface of mould to get the data of contour. The data store a PC and use to control the nozzle head to move above a couple of centimeters on the machined surface of die. The experimental parameters are the spraying time, the pressure, the size of abrasive grain and the mixing ratio between abrasive grain and liquid. The surface roughness is measured on the polished die which are SKDl 1 and Al7075 machined by NC. The surface roughness indicates the values of Rmax 0.5${\mu}{\textrm}{m}$ for Al7075 and Rmax 1.4${\mu}{\textrm}{m}$ for SKDl 1. It reduces the polishing time significantly and reduces the monotonous work for labors. As the results, the liquid honing system is useful method to apply for the die polishing and the automatic die polishing machine using liquid honing shows that it's very effective processing ability.

  • PDF

Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis (다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석)

  • 김승우;장인철;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Machine Capability Index Evaluation of Machining Center and Comparative Analysis with Machine Property (머시닝센터의 기계능력지수 평가 및 기계특성과의 분석)

  • Hong, Won-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.349-355
    • /
    • 2013
  • Recently, there is an increasing need to produce more precise products with small deviations from defined target values. Machine capability is the ability of a machine tool to produce parts within a tolerance interval. Capability indices are a statistical way of describing how well a product is machined compared to defined target values and tolerances. Today, there is no standardized way to acquire a machine capability value. This paper describes a method for evaluating machine capability indices in machining centers. After the machining of specimens, the straightness, roundness, and positioning accuracy were measured by using CMM (coordinate measuring machine). These measured values and defined tolerances were used to evaluate the machine capability indices. It will be useful for the industry to have standardized ways to choose and calculate machine capability indices.

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.