• Title/Summary/Keyword: Measurement validation

Search Result 696, Processing Time 0.032 seconds

Development of a Measuring Method for Dynamic Contact Forces between a Pantograph and a Contact Wire (열차 집전장치와 전차선 사이의 동적 접촉력 측정방법 개발)

  • 조용현;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-285
    • /
    • 2002
  • A new method of dynamic contact force measurement between a pantograph and a contact wire is proposed in this paper The method does not require design modification of an original pantograph in order to install sensors such as load cells. Contact forces can be expressed as the sum of vertical shear forces at the support points and inertial forces. Using specially-designed strain gage rosettes. vertical shear forces at the supported points can be measured without noise mixing and thermal effects. In order to obtain contact forces from shear forces, 3 inertial force compansation methods are proposed and compared in this paper. By validation process, the new proposed measurement method is verified to be applicable to the on-line current collection test.

  • PDF

Development of an Automatic Blood Pressure Device based on Korotkoff Sounds

  • Li, Xiong;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.227-236
    • /
    • 2019
  • In this study, we develop a Korotkoff sound based automatic blood pressure measurement device including sensor, hardware, and analysis algorithm. PVDF-based sensor pattern was developed to function as a vibration sensor to detect of Korotkoff sounds, and the film's output was connected to an impedance-matching circuit. An algorithm for determining starting and ending points of the Korotkoff sounds was established, and clinical data from subjects were acquired and analyzed to find the relationship between the values obtained by the auscultatory method and from the developed device. The results from 86 out of 90 systolic measurements and 84 out of 90 diastolic measurements indicate that the developed device pass the validation criteria of the international protocol. Correlation coefficients for the values obtained by the auscultatory method and from the developed device were 0.982 and 0.980 for systolic and diastolic blood pressure, respectively. Blood pressure measurements based on Korotkoff sound signals obtained by using the developed PVDF film-based sensor module are accurate and highly correlated with measurements obtained by the traditional auscultatory method.

Lung Sound Classification Using Hjorth Descriptor Measurement on Wavelet Sub-bands

  • Rizal, Achmad;Hidayat, Risanuri;Nugroho, Hanung Adi
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1068-1081
    • /
    • 2019
  • Signal complexity is one point of view to analyze the biological signal. It arises as a result of the physiological signal produced by biological systems. Signal complexity can be used as a method in extracting the feature for a biological signal to differentiate a pathological signal from a normal signal. In this research, Hjorth descriptors, one of the signal complexity measurement techniques, were measured on signal sub-band as the features for lung sounds classification. Lung sound signal was decomposed using two wavelet analyses: discrete wavelet transform (DWT) and wavelet packet decomposition (WPD). Meanwhile, multi-layer perceptron and N-fold cross-validation were used in the classification stage. Using DWT, the highest accuracy was obtained at 97.98%, while using WPD, the highest one was found at 98.99%. This result was found better than the multi-scale Hjorth descriptor as in previous studies.

Development of a Mushroom Powder Certified Reference Material for Element Analysis

  • Betru, Tegegn Gizachew;Yim, Yong-Hyeon;Lee, Kyoung-Seok
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.108-112
    • /
    • 2020
  • A certified reference material (CRM) for the analysis of nutrient elements in an edible mushroom (Ganoderma lyceum) powder has been developed (KRISS CRM 108-10-011). The mass fractions of calcium (Ca), iron (Fe), and zinc (Zn) were measured by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). To dissolve the fungi cell wall of mushroom consisted of chitin fibers, sample preparation method by single reaction chamber type microwave-assisted acid digestion with acid mixtures was optimized. The mean measurement results obtained from 12 sample bottles were used to assign as the certified values for the CRM and the between-bottle homogeneities were evaluated from the relative standard deviations. The certified values were metrologically traceable to the definition of the kilogram in the International System of Units (SI). This CRM is expected to be used for validation of analytical methods or quality control of measurement results in analytical laboratories when they determine the mass fractions of elements in mushroom or other similar samples.

The DEVELOPMENT OF WORK PERFORMANCE ANALYSIS SYSTEM

  • Lim, Chul-Woo;Yu, Jung-Ho;Kim, Chang-Duk
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.738-746
    • /
    • 2009
  • The purpose of this study is to develop the web-based system for work performance analysis(WPAS). The need of work performance analysis system has already been suggested in many previous researches on the computerization of the performance measurement in the construction site by using the indicators such as time, cost and quality. However, they had focused on measuring or analyzing the result when the project would be over. The WPAS suggests three indicators - work reliability, work effectiveness and work efficiency - to manage the performance of the construction site. It can help the manager more easily recognize the status of on-going work in the construction site by measuring and analyzing the work reliability rate, the work effectiveness and work efficiency every day. This research includes the procedures for WPAS measurement process, database structure of WPAS which was analyzed by the IDEF0 and the data flow diagram. Finally, this research introduces the result of WAPS's case studies and validation in the Korean construction site.

  • PDF

Accuracy and Consistency of Three-Dimensional Motion Analysis System (3차원 동작분석 시스템의 정밀도와 측정 일관성)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Computer-assisted motional analysis is a popular method in biomechanical studies. Validation of the specific system and its measurement are fundamental to its application in the areas. Because the accuracy and consistency of a particular system provide the researchers with critical information to assist in making judgements regarding the degree to which inferences can be drawn from measurement data. The purpose of this study was to assess the accuracy and consistency of the Kwon3D motion analysis system. Validation parameters were five lengths from eight landmarkers in combination with the DLT reconstruction error values, digitizing monitor resolutions, and numbers of control points. With the best setting, Kwon3D's estimations of 260cm, 200cm, 140cm, 100cm, and 20cm were $260.33{\pm}.688cm$, $199.98{\pm}.625cm$, $139.89{\pm}.537cm$, $99.75{\pm}.466cm$, $20.08{\pm}.114$, respectively. There was no significant DLT error value difference between two monitor resolutions, but 0.27cm significant difference in 260cm estimation. There were significant differences in 260cm and 200cm estimations between with 33-control-point DLT error and with 17-control-point DLT error, but no in 140cm, 100cm, and 20cm estimations. Test-retest results showed that Kwon3D measurements were highly consistent with reliability coefficients alpha of .9263 and above.

Validation of Non-invasive Method for Electrocardiogram Recording in Mouse using Lead II

  • Kim, Myung Jun;Lim, Ji Eun;Oh, Bermseok
    • Biomedical Science Letters
    • /
    • v.21 no.3
    • /
    • pp.135-143
    • /
    • 2015
  • Electrocardiogram measures the electric impulses generated by the heart during its cycle. Recently genome-wide association studies on electrocardiogram traits revealed many relevant genetic loci. Therefore, these findings need to be validated and investigated to determine the underlying mechanisms using mouse models. Invasive radiotelemetry has been widely used to record the electrocardiogram in mice because it has several advantages over non-invasive measurements. However, radiotelemetry is expensive and requires complicated surgery. On the other hand, a non-invasive method using 3 electrodes (one for earth) for lead II is easy to establish and allows for rapid measurement. In this study, eleven mice were measured with this non-invasive method and no statistical difference among them was found in any ECG measurements. In addition, repeat measurement in the same mouse was performed in 9 sets of experiment and the results indicated that non-invasive method was reliable for reproducibility. Further it was shown that measurements for 1, 5, 10, and 15 minutes were not different so that a short recording such as 5 minutes was enough to estimate the ECG values including heart rate. Further this method was validated by measuring the ECG of Balb/c and FVB that were previously shown to differ in ECG values by radiotelemetry. Significant differences were found in heart rate, PR interval and corrected QT interval between these mouse strains. This study partially proved that non-invasive method also could provide the accuracy and reproducibility. Based on these results, the non-invasive ECG recordings of lead II is recommended as a useful method for quick test in mouse model.

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.

Validation of COMS Ka band Antenna Beam Coverage (천리안위성 Ka대역 안테나 빔 커버리지 검증)

  • Jo, Jin-Ho;You, Moon-Hee;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • This paper described validation results of COMS Ka band antennas beam coverages which were developed by ETRI. After satellite launch, In Orbit Test(IOT) activities are stat to check spacecraft and payloads are still in healthy condition after launch. During IOT phase, ETRI measured radiation patterns of COMS Ka band antennas and compare with ground test(CATR) results. The antenna patterns similarity between IOT results and CATR results show that COMS Ka band antenna withstand launch vibration and in the good healthy condition. After IOT, ETRI performed field test for beam coverage measurements with vehicle to check if Ka band beam coverage are formed well as designed. For the beam coverage measurement, 17 points were selected over the Korean peninsula. The field measurement data were very similar with CATR data and this confirms that beam coverage are formed well over the Korean peninsula as expected.

Development and Validation of Physical Education Teaching Anxiety Scale for Preservice Special Teacher (예비특수교사의 체육교수불안 척도 개발 및 타당화)

  • Lee, Yong-Kuk
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.3
    • /
    • pp.375-389
    • /
    • 2018
  • This study aims to development and validation a tool to measure physical education teaching anxiety(PETA) among preservice special teacher. In order to achieve this study purpose, first, the preliminary items for measurement scale were collected through open-ended questions and were developed by inductive content analysis from the 100 preservice special teacher. Second, investigation for construct validity was conducted on exploratory factor analysis from the 100 preservice special teacher. Third, in the final process, verify exernal validity was conducted by confirmatory factor analysis and t-test from the 300 presevice special teacher. As a result, the measurement scale of physical education teaching anxiety(PETA) among preservice special teacher consists of 4 main factors with 14 items: pedagogical content knowledge(n=4), understanding students(n=4), class environment(n=3), class management(n=3) factors and this scale has enough suitability.