• 제목/요약/키워드: Measurement conditions

검색결과 3,615건 처리시간 0.029초

지하수 인공함양시스템의 생물학적 평가를 위한 생물막 형성 조건 및 형성도 분석 방법에 관한 기초연구 (Basic Study on Conditions and Analytical Methods of Biofilm Formation for the Bioassessment of Artificial Groundwater Recharge System)

  • 공인철;이소라;하규철;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.22-30
    • /
    • 2015
  • For the preliminary investigations of the bioclogging on groundwater artificial recharge system, studies for conditions and analytical methods of biofilm formation on sediments were performed. Based on the tested results, following conditions were determined for biofilm formation on batch process: optimum period for biofilm formation (30 days), the proper inoculating water (pond water), medium (minimum salt medium with 0.1% yeast extract). Procedures for the measurement of ATP and DHA were also determined. Biomass extract was used for ATP measurement, while sediment itself for DHA. Effects of metals on the biofilm formation were investigated under the determined conditions. Different sensitivities and orders were found depending on tested metals and measurement methods. In general, biomass measurement by ATP and viable cell count showed higher sensitivity than that of DHA. Following toxicity orders were also appeared for ATP and viable cell: Cu ≈ Cd > As(III).

기준 밀도계의 측정 오차 분석에 관한 연구 (A Study on the Analysis of Measurement Errors of Specific Gravity Meter)

  • 이강진;허재영;하영철;안승희;이승준;이철구
    • Korean Chemical Engineering Research
    • /
    • 제40권6호
    • /
    • pp.676-680
    • /
    • 2002
  • 기준 밀도계는 기준 조건하에서 밀도를 측정하는 기기로서, 산업계에서 특히 대유량 천연가스 계량에 폭 넓게 사용된다. 본 연구에서는 기준 밀도계의 적정 설치 및 운영방안을 제시하여 천연가스 유량 측정 정확도를 향상시키고자 현장 실험을 수행하였다. 실험 결과, 교정가스로 메탄과 질소가스 대신 메탄과 표준가스로 교정한 실험결과가 작은 밀도오차를 발생하고, 정확한 밀도 측정을 위해서는 정기적인 교정이 필수적이며, 또한 기준 밀도계는 주위 조건에 민감하게 반응하여, 주위 온도가 높으면 오차가 증가하는 것도 확인되었다.

Intra- and inter-rater reliability of muscle thickness measurement of the tibialis anterior using different inward pressures

  • Lee, Seong-Joo;Lim, Ji Young;Lee, Chang-Hyung;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권4호
    • /
    • pp.218-224
    • /
    • 2019
  • Objective: This reliability study examined the effects of applying varying induced inward pressures using a transducer placed at 0° neutral ankle position (NEU) and 15° ankle dorsiflexion (DF) on tibialis anterior (TA) muscle thickness using a custom-made device with a force indicator during rehabilitative ultrasound imaging. Design: Cross-sectional study. Methods: Twenty-four healthy subjects were recruited in this study. Two examiners measured the muscle thickness of the TA at 0° NEU and 15° DF in 3 conditions of inward pressures (1.0 N, 2.0 N, and 4.0 N) using a custom-made holder. The muscle thickness was measured three times for each of the conditions arranged in random order. For intra- and inter-rater reliability, the intraclass correlation coefficients (ICCs) with 95% confidence intervals, standard error of measurement, minimal detectable change, and coefficient of variation were analyzed. One-way repeated measures analysis of variance was conducted for investigating changes of TA muscle thickness according to the inward pressures of the transducers. Results: The intra-rater reliability of TA muscle thickness measurement was excellent (ICC3,1: 0.92-0.96) for all conditions (at both ankle joint angles per varying inward pressure). Likewise, the inter-rater reliability of TA muscle thickness measurement was excellent (ICC2,1: 0.89-0.97) under same conditions. The mean of TA thickness showed the trend of decreasing significantly with increased inward pressures at all ankle joint angles (p<0.05). Conclusions: Use of this custom-made device with a force indicator is useful to accomplish the high intra- and inter-rater reliability of TA muscle thickness measurement at both ankle joint angles in reducing the measurement error.

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교 (Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field)

  • 이강진;허재영;하영철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발 (Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload)

  • 박성준;박재규;최재호
    • 대한인간공학회지
    • /
    • 제24권3호
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.

미곡(米穀)의 상온통풍건조(常温通風乾燥)를 위한 컴퓨터 계측(計測) 및 제어(制御)시스템 개발 (Development of a Computer Measurement and Control System for Rough Rice Drying by Natural Air)

  • 김태곤;장동일;김만수
    • Journal of Biosystems Engineering
    • /
    • 제13권4호
    • /
    • pp.46-55
    • /
    • 1988
  • The objective of this study was to develop a computer measurement and control system which enable it possible to manage the natural air rough rice drying and storage properly and safely. The following contents of work were taken in this study in order to fulfill the above goal: 1) Design and construction of measurement system which can measure the rough rice drying conditions automatically and transfer them to computer system for data processing. 2) Development of a management software which can determine the need of fan operation by the analysis of drying and/or storage conditions. 3) Design and construction of a control system which deliver the computer decision of fan operation and make it on and off. 4) Technical and economical analysis of the computer measurement and control system development by the comparison experiments of the computer management and of the manual.

  • PDF

선박 방사소음의 측정방법 및 정확도 해석 (Ship Radiated Noise Measurement Methods and Accuracy Analysis)

  • 이필호;윤종락
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.738-748
    • /
    • 2005
  • The ship radiated noise level fluctuates by the difference of interference and reverberation according to measurement methods and environmental conditions. These phenomena cause error of the source level estimation even in the same environment conditions. This paper describes a quantitative analysis and a reduction method for an error value to the source level estimation in spatial and temporal interference environment. The design criteria of the radiated noise measurement array composed of omni-directional hydrophones and the source level accuracy in the deep water range are given. The source level accuracy in the shallow water range is also derived based on the statistical model of the multiple reflection paths. The results are verified using the water tank experiment and the sea trial.

Development of the Ultrasonic Method for Two-Phase Mixture Level Measurement

  • Lee, Dong-Won;No, Hee-Cheon;Song, Chul-Wha;Jeong, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.124-124
    • /
    • 1999
  • An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non¬nuelear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam. and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduce the effects of the attenuation and the dif.JUsed reflection caused by suface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do.

  • PDF

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.