• 제목/요약/키워드: Measurement and estimation

검색결과 2,641건 처리시간 0.032초

An Alternative State Estimation Filtering Algorithm for Temporarily Uncertain Continuous Time System

  • Kim, Pyung Soo
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.588-598
    • /
    • 2020
  • An alternative state estimation filtering algorithm is designed for continuous time systems with noises as well as control input. Two kinds of estimation filters, which have different measurement memory structures, are operated selectively in order to use both filters effectively as needed. Firstly, the estimation filter with infinite memory structure is operated for a certain continuous time system. Secondly, the estimation filter with finite memory structure is operated for temporarily uncertain continuous time system. That is, depending on the presence of uncertainty, one of infinite memory structure and finite memory structure filtered estimates is operated selectively to obtain the valid estimate. A couple of test variables and declaration rule are developed to detect uncertainty presence or uncertainty absence, to operate the suitable one from two kinds of filtered estimates, and to obtain ultimately the valid filtered estimate. Through computer simulations for a continuous time aircraft engine system with different measurement memory lengths and temporary model uncertainties, the proposed state estimation filtering algorithm can work well in temporarily uncertain as well as certain continuous time systems. Moreover, the proposed state estimation filtering algorithm shows remarkable superiority to the infinite memory structure filtering when temporary uncertainties occur in succession.

Nozzle Swing Angle Measurement Involving Weighted Uncertainty of Feature Points Based on Rotation Parameters

  • Liang Wei;Ju Huo;Chen Cai
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.300-306
    • /
    • 2024
  • To solve the nozzle swing angle non-contact measurement problem, we present a nozzle pose estimation algorithm involving weighted measurement uncertainty based on rotation parameters. Firstly, the instantaneous axis of the rocket nozzle is constructed and used to model the pivot point and the nozzle coordinate system. Then, the rotation matrix and translation vector are parameterized by Cayley-Gibbs-Rodriguez parameters, and the novel object space collinearity error equation involving weighted measurement uncertainty of feature points is constructed. The nozzle pose is obtained at this step by the Gröbner basis method. Finally, the swing angle is calculated based on the conversion relationship between the nozzle static coordinate system and the nozzle dynamic coordinate system. Experimental results prove the high accuracy and robustness of the proposed method. In the space of 1.5 m × 1.5 m × 1.5 m, the maximum angle error of nozzle swing is 0.103°.

무궁화위성 추적 안테나 바이어스 추정 연구 (A Study on Koheasat Tracking Antenna Bias Estimation)

  • 박봉규;탁민제;안태성
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.58-66
    • /
    • 2003
  • 본 논문에서는 무궁화위성을 대상으로 추적 안테나의 바이어스를 추정하기 위한 방안들을 제시하고 있다. 먼저 거리, 방위각, 앙각에 이어 선회시선거리를 포함하는 배치필터를 구성하였으며 시뮬레이션을 통하여 바이어스 추정성능 변화를 분석하였다. 또한 결과를 보완하기 위하여 정밀하게 보정된 타 추적 안테나의 정보를 이용하여 대상 안테나의 바이어스를 정확하게 예측하기 위한 방안을 제시하였다. 마지막으로 안테나 바이어스 추정 결과를 분석하고 평가할 수 있도록 안테나 바이어스간의 상관관계에 대한 분석을 수행하였다.

평면 음향 홀로그래피에서 센서간 특성 차이와 측정 위치의 부정확성에 의한 음압 추정 오차의 정량화 (Quantification of Acoustic Pressure Estimation Error due to Sensor and Position Mismatch in Planar Acoustic Holography)

  • 남경욱;김양한
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1023-1029
    • /
    • 1998
  • When one attempts to construct a hologram. one finds that there are many sources of measurement errors. These errors are even amplified if one predicts the pressures close to the sources. The pressure estimation errors depend on the following parameters: the measurement spacing on the hologram plane. the prediction spacing on the prediction plane. and the distance between the hologram and the prediction plane. This raper analyzes quantitatively the errors when these are distributed irregularly on the hologram plane The sensor mismatch and inaccurate measurement location. position mismatch. are mainly addressed. In these cases. one can assume that the measurement is a sample of many measurement events. The bias and random error are derived theoretically. Then the relationship between the random error amplification ratio and the parameters mentioned above is examined quantitatively in terms of energy.

  • PDF

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

가속도 변위 검출형 동적 질량 측정 제어 시스템 (Dynamic Mass-measurement control System of Acceleration and Displacement Sensing Type)

  • Kim, B.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.109-116
    • /
    • 1994
  • Quickness and precision are the two most important requirements for an industrial scale used in production lines. In this paper, a new approach, "Dynamic-Mass measurement control System of Acceleration and Displacement(DMS-AD) sensing", is presented to improve some of drowbacks in conventional scales. The system, consisted of acceleration and displace- ment sensors, spring scale and microcomputer, is based on full utilization of dynamic mass measurement of acceleration and displacement via microcomputer-assisted real time monitoring. The rsulting system, when combined with appropriate dynamic mass estimation algorithm software, has shown its effectiveness in terms of two desirable characteristics required. required.

  • PDF

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터 (A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System)

  • 이정근
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF

A Novel Range Estimator for Surface to Air Missile with Closing Velocity Measurements

  • Ra, W.S.;Whang, I.H.;Lee, J.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1822-1825
    • /
    • 2003
  • A practical range estimator based on the robust Kalman filter is proposed to solve the range estimation problem for surface to air missile(SAM) homing guidance. Apart from the previous works based on the extended Kalman filter(EKF) with bearing only measurement, the proposed scheme makes use of line-of-sight(LOS) rate to ensure the fast convergency at long-range. In this reason, the robust Kalman filter is considered to deal with LOS rate measurement error. The recursive linear structure of proposed filter is easy to implement and make it possible to reduce computational burdens. Moreover, it shows good estimation performance without specific guidance law such as oscillation proportional navigation guidance(OPNG).

  • PDF