• Title/Summary/Keyword: Measurement and estimation

Search Result 2,641, Processing Time 0.035 seconds

An Improved Phase Estimation Method for AM Range Measurement System (진폭 변조 거리 측정 시스템에 적용 가능한 개선된 위상 추정 기법)

  • Kim, Dae-Joong;Oh, Taek-Hwan;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.453-461
    • /
    • 2012
  • This paper proposes an improved phase estimation method for AM(Amplitude Modulation) range measurement system. The previous phase estimation method induces errors by Doppler shift of a moving target. The proposed method compensates phase estimation error through the ADC(Adaptive Doppler Correction) to take the Doppler shift, thus can improve distance measurement accuracy. When compared with the previous method through simulation results, the Doppler shift compensation and accuracy are improved by 94.7% and 50%, respectively. Target distance error in an acoustic tank is estimated to be 7.7cm, which confirms that the proposed method can be used to estimate the distance in the marine environment.

The wavelet based Kalman filter method for the estimation of time-series data (시계열 데이터의 추정을 위한 웨이블릿 칼만 필터 기법)

  • Hong, Chan-Young;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.449-451
    • /
    • 2003
  • The estimation of time-series data is fundamental process in many data analysis cases. However, the unwanted measurement error is usually added to true data, so that the exact estimation depends on efficient method to eliminate the error components. The wavelet transform method nowadays is expected to improve the accuracy of estimation, because it is able to decompose and analyze the data in various resolutions. Therefore, the wavelet based Kalman filter method for the estimation of time-series data is proposed in this paper. The wavelet transform separates the data in accordance with frequency bandwidth, and the detail wavelet coefficient reflects the stochastic process of error components. This property makes it possible to obtain the covariance of measurement error. We attempt the estimation of true data through recursive Kalman filtering algorithm with the obtained covariance value. The procedure is verified with the fundamental example of Brownian walk process.

  • PDF

Driveline Output Torque Estimation Using Discrete Kalman Filter (이산 칼만 필터를 이용한 구동 출력 토크 추정)

  • Gi-Woo, Kim
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-75
    • /
    • 2012
  • This paper presents a study on the driveline output torque estimation using a discrete Kalman filter. The in-situ output shaft torque is first measured by a non-contacting magneto-elastic torque transducer. The linear state-space system equations are first derived and the discrete Kalman filter is designed based on the Kalman filter theory to recover the driveline output torque contaminated by random noises. In addition to using torque measurement, the estimation of the output torque using two angular velocities: the output and wheel, is also conducted. The experimental results show that the discrete Kalman filter can be effective for not only removing the random noise in output torque but also estimating the output torque without torque measurement.

Estimation of Errors in Inertial Navigation Systems with GPS

  • Chang, Yu-Shin;Ha, Seong-Ki;Kim, Eun-Joo;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.69.1-69
    • /
    • 2001
  • In this paper, observability properties of a multiantenna GPS measurement system for the estimation of errors in INS are presented. It is shown that time-invariant INS error models are observable with measurements from at least three GPS antennas on the vehicle. There is at least one unobservable mode with two antennas. There are three unobservable modes with one antenna. It is also shown that time-varying INS error models are instantaneously observable with measurements from three GPS antennas. A numerical simulation results are given to verify the effectiveness of the multiantenna measurement system on the INS error estimation. In the simulation, a GPS measurement system is considered in which a trade-off between computational load and accuracy of estimation is achieved.

  • PDF

Missile closing velocity estimation based on the LOS rate measurement (수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

The Maintenance Cost Estimation Model for Information System Maintenance Based on the Operation, Management and Service Metrics (운영·관리 및 서비스 지표에 기반한 정보시스템 유지보수 비용 추정 모델)

  • Lee, Byoung-Chol;Rhew, SungYul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.77-85
    • /
    • 2013
  • In this paper, we present the cost measurement metrics for the operation management and service improvement besides the general maintenance. The cost measurement metrics of the operation management and service improvement are based on the metrics that are classified and summarized precedent studies and complemented by empirical measuring indicators, and we propose the maintenance cost estimation model based on this metrics. The maintenance costs can be calculated detailedly, because the proposed metrics can be used selectively, depending on the scope of the information system maintenance. The effectiveness of the proposed maintenance cost measurement metrics and cost estimation model is verified by comparison between existing studies and our research.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Development and Implementation of Experimental Design Process for Estimating the Measurement Precisions (측정 정밀도 추정을 위한 게이지 실험계획 프로세스 개발 및 적용)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.557-563
    • /
    • 2009
  • The research develops measurement processes for estimating and evaluating the gauge R&R(Reproducibility & Repeatability) using ANOVA(Analysis of Variance) of experimental design tools. The ten-step processes developed include experimental goal setting, the selection of characteristics(factors, levels), data model, ANOVA, EMS(Expected Mean Square), estimation of gauge precisions, and evaluation indexes. The three-factor combined measurement models are presented to show the processes developed in this paper.

  • PDF

Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter (휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정)

  • Myeonggeun, Jun;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.