• Title/Summary/Keyword: Measurement Model Validation

Search Result 243, Processing Time 0.03 seconds

Development and Validation of a Testing Tool for Mathematical Creativity and Character (수학적 창의·인성 검사도구 개발 및 타당화)

  • Whang, Woo-Hyung;Kim, Dong-Joong;Kim, Won;Lee, Da-Hee;Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.56 no.1
    • /
    • pp.41-62
    • /
    • 2017
  • The purpose of this study is to propose the possibility of integrating creativity and character education and its need in mathematics education by developing and validating a testing tool assessing students' perceptions of mathematical creativity and character. For this purpose, we developed sixty questions in total to extract factors of mathematical creativity and character based on a literature review. Then, questionnaire data were collected for 1258 middle school students. After the collected data were randomly divided into two (n1=615, n2=643), the first group of data was used for exploratory factor analysis and the second one was employed for confirmatory factor analysis. As a result, 45 problems showing nine factors were extracted. The cognitive components of creativity includes divergent thinking, convergent thinking, imagination/visualization, and reasoning, whereas its affective components are interest, motivation, and openness. The character components contain participation, communication, responsibility, and promise. In addition, it is concluded that the developed testing tool, in which character in the model of this study impacts creativity meaningfully, has a measurement consistency which is not affected by gender and grade differences. These results have implications for a guide to curriculum development promoting creativity and character at school by showing objective and practical foundations of helping how to integrate creativity and character education.

Relationship between the Methane Production and the CNCPS Carbohydrate Fractions of Rations with Various Concentrate/roughage Ratios Evaluated Using In vitro Incubation Technique

  • Dong, Ruilan;Zhao, Guangyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1708-1716
    • /
    • 2013
  • The objective of the trial was to study the relationship between the methane ($CH_4$) production and the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions of feeds for cattle and the suitability of CNCPS carbohydrate fractions as the dietary variables in modeling the $CH_4$ production in rumen fermentation. Forty-five rations for cattle with the concentrate/roughage ratios of 10:90, 20:80, 30:70, 40:60, and 50:50 were formulated as feed samples. The Menke and Steingass's gas test was used for the measurement of $CH_4$ production. The feed samples were incubated for 48 h and the $CH_4$ production was analyzed using gas chromatography. Statistical analysis indicated that the $CH_4$ production (mL) was closely correlated with the CNCPS carbohydrate fractions (g), i.e. CA (sugars); $CB_1$ (starch and pectin); $CB_2$ (available cell wall) in a multiple linear pattern: $CH_4=(89.16{\pm}14.93)$ $CA+(124.10{\pm}13.90)$ $CB_1+(30.58{\pm}11.72)$ $CB_2+(3.28{\pm}7.19)$, $R^2=0.81$, p<0.0001, n = 45. Validation of the model using 10 rations indicated that the $CH_4$ production of the rations for cattle could accurately be predicted based on the CNCPS carbohydrate fractions. The trial indicated that the CNCPS carbohydrate fractions CA, $CB_1$ and $CB_2$ were suitable dietary variables for predicting the $CH_4$ production in rumen fermentation in vitro.

A Biosensor for the Rapid Detection of the Fungicide Iprovalicarb Residuess (살균제 Iprovalicarb 잔류물의 신속한 검출을 위한 바이오센서)

  • Cho, Han-Keun;Kim, Woon-Ho;Kyung, Kee-Sung;Lee, Eun-Young
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.440-447
    • /
    • 2007
  • In this study, a biosensor was developed using an enzyme-linked immunosorbent assay (ELISA) to rapidly measure the fungicide iprovalicarb residues in agricultural products. The biosensor was designed to include micro-pumps and solenoid valves for fluid transport, a spectrophotometer cuvet as a reaction chamber, a photodiode with a light-emitting diode for optical density measurement, and a control microcomputer to implement assay. The rate of change in optical density of the cuvet was read as final signal output. Micro-pumps were evaluated to investigate their delivery capability, the highest values of the error and the coefficient of variation were 4.3% and 4.6% respectively. As the incubation period was reduced from 15 minutes to 11 minutes to shorten the total processing time, the sensor sensitivity was decreased as the antibody dilution ratio was reduced to a half. The maximum usable period of the coated cuvet was found to be two days with 1% error limit. To predict the concentration of the iprovalicarb residue in agricultural products, a linear calibration model was obtained with r-square values of 0.992 for potato and 0.985 for onion. In validation test for the samples of potatoes and onions against the high performance liquid chromatography, very high correlation values were obtained as 0.996 and 0.993 respectively. Using the cuvet immobilized with antigen, it took 21-minutes for the biosensor to complete the measuring process of the iprovalicarb residues.

Validation of Food Security Measures for the Korean National Health and Nutrition Examination Survey (국민건강영양조사 식품안정성 측정 도구의 타당도 조사)

  • Kim, Ki-Rang;Hong, Seo-Ah;Kwon, Sung-Ok;Choi, Bo-Youl;Kim, Ga-Young;Oh, Se-Young
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.6
    • /
    • pp.771-781
    • /
    • 2011
  • The objective of this study was to assess the reliability and validity of food security measures, which was developed based on the US household food security survey module (US HFSSM) with content validity in the Korean population. The reliability and validity were assessed by internal consistency, construct validity and criterion-related validity. The study included 446 households. Among those, 46.2% were households with children. The proportion of food insecure households was 33.3%. Among those, 35.4% and 64.6% households were food insecure with hunger and without hunger, respectively. The Cronbach's alpha coefficients were 0.84 and the infit value by the Rasch model analysis ranged from 0.68 to 1.43. The scale item response curves by food insecurity severity explained well the nature and characteristics of food security, indicating the highest proportion of "yes" for the items on diet quality, followed by those with diet quantity. The result of criterion-related validity showed that food insecurity status was significantly related in a dose-response manner with the household income level, food expenditure, subjective health state, subjects' educational level. Household food security status was also related to dietary diversity regarding protein foods, fruits and fruit juice, and milk and dairy product. These findings suggest that the food security instrument is reliable and valid and would be used to assess food security status in the Korean population.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Development of a Tool to Measure Math Anxiety Factors for High School Students and Validation of Validity (고등학생용 수학불안 요인 측정 도구 개발 및 타당도 검증)

  • Kang, Yanggu;Han, Sunyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.2
    • /
    • pp.201-227
    • /
    • 2022
  • The purpose of this study was to develop an instrument measuring mathematics anxiety suitable for Korean High school students. In order to achieve this study purpose, the study was conducted according to the procedure of setting components of mathematics anxiety, developing questions, and verifying validity and reliability. First, in order to set the components of mathematic anxiety, previous studies on mathematic anxiety. Through this, six factors of mathematic anxiety were derived. Next, new questions were developed for each of the six constituent factors. The 122 questions were revised and supplemented through two content validity tests, and the final instrument for mathematics anxiety consisted of 49 questions of 6 factors. Finally, to verify the validity and reliability of the measurement instrument for mathematics anxiety, a survey was conducted on 1,848 students from 16 universities in Seoul and the metropolitan area. Next, a validity analysis was conducted with the 1,645 responses, excluding students who answered that there was no mathematics anxiety. As a result of exploratory factor analysis, 15 out of 49 questions were removed. Six factors were named individual characteristics, pressure on achievement, abstraction in mathematics, teaching and learning style, parental attitudes, and cumulative mathematics subjects. As a result of confirmatory factor analysis, the model fit was found to be appropriate, and the convergence validity and discriminant validity were found to be good.

Validation and comparison of volume measurements using 1 multidetector computed tomography and 5 cone-beam computed tomography protocols: An in vitro study

  • Juliana Andrea Correa, Travessas;Alessandra Mendonca, dos Santos;Rodrigo Pagliarini, Buligon;Nadia Assein, Arus;Priscila Fernanda Tiecher, da Silveira;Heraldo Luis Dias, da Silveira;Mariana Boessio, Vizzotto
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.399-408
    • /
    • 2022
  • Purpose: The purpose of this study was to compare volume measurements obtained using 2 image software packages on Digital Imaging and Communications in Medicine (DICOM) images acquired from 1 multidetector computed tomography and 5 cone-beam computed tomography devices, using different protocols for physical volume measurements. Materials and Methods: Four pieces of bovine leg were prepared. Marrow was removed from 3 pieces, leaving cortical bone exposed. The resulting space of 1 piece was filled with water, another was filled with propylene glycol, and the third was left unfilled. The marrow in the fourth sample was left fully intact. Volume measurements were obtained after importing DICOM images into the Dolphin Imaging 11.95 and ITK-SNAP software programs. Data were analyzed using 3-way analysis of variance with a generalized linear model to determine the effects of voxel size, software, and content on percentage mean volume differences between tomographic protocols. A significance level of 0.05 was used. Results: The intraclass correlation coefficients for intraobserver and interobserver reliability were, respectively, 0.915 and 0.764 for the Dolphin software and 0.894 and 0.766 for the ITK-SNAP software. Three sources of statistically significant variation were identified: the interaction between software and content (P=0.001), the main effect of content (P=0.014), and the main effect of software (P=0.001). Voxel size was not associated with statistically significant differences in volume measurements. Conclusion: Both content and software influenced the accuracy of volume measurements, especially when the content had gray values similar to those of the adjacent tissues.

Three-Dimensional Evaluation of Skeletal Stability following Surgery-First Orthognathic Approach: Validation of a Simple and Effective Method

  • Nabil M. Mansour;Mohamed E. Abdelshaheed;Ahmed H. El-Sabbagh;Ahmed M. Bahaa El-Din;Young Chul Kim;Jong-Woo Choi
    • Archives of Plastic Surgery
    • /
    • v.50 no.3
    • /
    • pp.254-263
    • /
    • 2023
  • Background The three-dimensional (3D) evaluation of skeletal stability after orthognathic surgery is a time-consuming and complex procedure. The complexity increases further when evaluating the surgery-first orthognathic approach (SFOA). Herein, we propose and validate a simple time-saving method of 3D analysis using a single software, demonstrating high accuracy and repeatability. Methods This retrospective cohort study included 12 patients with skeletal class 3 malocclusion who underwent bimaxillary surgery without any presurgical orthodontics. Computed tomography (CT)/cone-beam CT images of each patient were obtained at three different time points (preoperation [T0], immediately postoperation [T1], and 1 year after surgery [T2]) and reconstructed into 3D images. After automatic surface-based alignment of the three models based on the anterior cranial base, five easily located anatomical landmarks were defined to each model. A set of angular and linear measurements were automatically calculated and used to define the amount of movement (T1-T0) and the amount of relapse (T2-T1). To evaluate the reproducibility, two independent observers processed all the cases, One of them repeated the steps after 2 weeks to assess intraobserver variability. Intraclass correlation coefficients (ICCs) were calculated at a 95% confidence interval. Time required for evaluating each case was recorded. Results Both the intra- and interobserver variability showed high ICC values (more than 0.95) with low measurement variations (mean linear variations: 0.18 mm; mean angular variations: 0.25 degree). Time needed for the evaluation process ranged from 3 to 5 minutes. Conclusion This approach is time-saving, semiautomatic, and easy to learn and can be used to effectively evaluate stability after SFOA.

Development of a Web Platform System for Worker Protection using EEG Emotion Classification (뇌파 기반 감정 분류를 활용한 작업자 보호를 위한 웹 플랫폼 시스템 개발)

  • Ssang-Hee Seo
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2023
  • As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.

Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner (지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구)

  • Song, Ahram;Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.559-570
    • /
    • 2017
  • A partial least squares regression (PLSR) model was developed to map the internal soluble solids content (SSC) of apples using a ground-based hyperspectral scanner that could simultaneously acquire outdoor data and capture images of large quantities of apples. We evaluated the applicability of various preprocessing techniques to construct an optimal prediction model and calculated the optimal band through a variable importance in projection (VIP)score. From the 515 bands of hyperspectral images extracted at wavelengths of 360-1019 nm, 70 reflectance spectra of apples were extracted, and the SSC ($^{\circ}Brix$) was measured using a digital photometer. The optimal prediction model wasselected considering the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP) and coefficient of determination of prediction $r_p^2$. As a result, multiplicative scatter correction (MSC)-based preprocessing methods were better than others. For example, when a combination of MSC and standard normal variate (SNV) was used, RMSECV and RMSEP were the lowest at 0.8551 and 0.8561 and $r_c^2$ and $r_p^2$ were the highest at 0.8533 and 0.6546; wavelength ranges of 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, and 992-1019 nm were most influential for SSC determination. The PLSR model with the spectral value of the corresponding region confirmed that the RMSEP decreased to 0.6841 and $r_p^2$ increased to 0.7795 as compared to the values of the entire wavelength band. In this study, we confirmed the feasibility of using a hyperspectral scanner image obtained from outdoors for the SSC measurement of apples. These results indicate that the application of field data and sensors could possibly expand in the future.