• Title/Summary/Keyword: Measured bearing capacity

Search Result 182, Processing Time 0.03 seconds

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : II. Bearing Capacity Prediction (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : II. 이론식과 토크에 의한 지지력 예측 비교)

  • Lee, Jongwon;Lee, Dongseop;Na, Kyunguk;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Various prediction methods for the bearing capacity of helical piles have been introduced with consideration of both the steel shaft and the helix plates attached to the shaft. In this paper, three representative methods, that is, individual bearing method, cylindrical shear method, and torque correlation method are discussed and compared to each other. The prediction methods were verified by comparing with a series of loading test results performed on moderate-size helical piles from the companion paper. As a result, the measured bearing capacity is greater than the bearing capacity predicted by the cylindrical shear method, but smaller than that of the individual bearing method. In addition, the bearing capacity predicted by the torque correlation method is in good agreement with the measured bearing capacity.

The Static Characteristics of Hydrostatic Journal Bearings (정압저어널 베어링의 정특성 해석)

  • Park, Cheon-Hong;Kim, Seok-Il;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.21-27
    • /
    • 1988
  • In this study, a series of experiments and analyses are performed to estimate the static characteristics of hydrostatic journal bearing such as load capacity, pressure change in each recess, eccentricity of spindle, etc. The experiments are carried out for a multi-recess type journal bearing with capillary restrictor. The Finite Element Method(FEM) is used for the analyses. The predicted load capacity under the condition of stationary or eccentric ratio of bellow 0.2 of the spindle shows excellent agreement with the measured. But, with an increase of the eccentric ratio when the spindle is rotating, the predicted load capacity is largely estimated than the measured. It seems that the difference is mainly caused among others from the fact that the effect of oil-viscosity variation due to the temperature change in the bearing is not introduced into the analyses. The analysis method proposed to estimate the static characteristics of hydrostatic journal bearing is considered to be very reliable since the predicted results are overall in good agreement with the measured.

  • PDF

Evaluation of Bearing Capacity for Permeable Pavement using Geocell (지오셀을 이용한 투수성 포장의 지지력 평가)

  • Lee, Su-Hyung;Yoo, In-Kyoon;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • This paper presents the results of investigation into bearing capacity of a geocell reinforced load base. In order to analyze variation of bearing capacity of the geocell reinforced road base comparing to without reinforced geocell road base, a series of full-scale tests were performed and measured using FWD (Falling Weight Deflectometer). The results indicate that bearing capacity of geocell (T=1.5 mm) reinforecd road base increase than the unreinforced road base.

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test (모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석)

  • 이인모;이정학
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 1993
  • Model pile tests in calibration chamber are performed in order to study the two factors that the pile bearing capacity is significantly influenced by. Those factors are the critical depth concept and the scale effect caused by pile diameters. Firstly, the predicted values of end bearing capacity from the various static formulae were compared with the measured ones from model pile tests. Secondly, the critical depth concept and the scale effect were investigated by using two different soil conditions in a series of calibration chamber tests : the one is uniform sand : and the other is weathered granites overlayered by sand. Main results obtained from the model tests can be summarized as follows : (1) The end bearing capacity was increased with pile penetration depth up to penetration ratio of 7 to 8 when the cell pressure is high, and the critical depth was observed in the current chamber tests with uniform sand layer , (2) The predicted end bearing capacities were mostly lager than the measured, and it was found that the differences between the predicted and the measured values became smaller as the pile penetration ratio was increased : (3) The end bearing capacity of the small diameter pile in weathered granites layer was mostly less than that of the larger pile, while in uniform sand layer it was vice.

  • PDF

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

A Study on Bearing Capacity according to the Number of Reinforcement Layers in Sandy Ground Reinforced by Mats of Equal-intervals (등간격의 매트로 보강된 모래지반의 보강층수에 따른 지지력에 관한 연구)

  • 임종철;박성재;주인곤;이재열;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.201-217
    • /
    • 1999
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. In recent time, the use of reinforced soil has become popular due to the availability of durable strong geosynthetic materials. In this papers, through the laboratory model tests on sandy ground reinforced by mats about the strip footing under plane strain condition, the effects of bearing capacity improvement and behaviour of sandy ground were observed. And bearing capacities calculated by proposed method and measured by tests were compared.

  • PDF

The Bearing Capacity Comparison of Drilled Shaft by the Static Load Test and the Suggested Bearing Capacity Formulas (현장타설말뚝의 정재하시험에 의한 지지력과 이론식에 의한 지지력과의 비교)

  • 천병식;김원철;최용규;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2003
  • The driven pile has environmental problems such as vibration and noise. Especially, if the site consists of gravel, cobble and weather rock, the driven pile can not be applied. Therefore, the application of the drilled shafts is increasing in Korea. However, the bearing capacity values by the suggested theoretical formulas are generally considered too conservative. In this paper, static load tests for the rock socketed drilled shaft at Gwangandaero and Suyeong3hogyo are performed and in order to estimate the side friction of the shaft, strain gauges are applied. The bearing capacities from the field test data and the bearing capacity values by the theoretical formula are compared. Even the static load tests didn't reach to the ultimate bearing capacity condition, and all the measured bearing capacity values were higher than those by the theoretical formulas. The field data also showed that the major bearing capacities were not due to end bearings but side friction resistances. Based on the above results, several suggestions are proposed for the drilled shaft design.

A Study on Design Method of Geogrid Encased Stone Colum for Settlement Reduction in Railroad (철도노반 침하저감을 위한 토목섬유 감쌈 쇄석말뚝 설계방안 고찰)

  • Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • The geogrid encased stone column (GESC) system, which increases the confinement effect, has been developed to improve the load carrying capacity of stone columns. The resonable design method for calculating the geogrid ring tension force and ultimate bearing capacity that can be applied to the design of GESC is proposed. In order to calculate design procedure for GESC, two ultimate bearing capacities were compared. One is the ultimate bearing capacity measured using data of the field loading test in light railway site and the other is the ultimate bearing capacity using suggested design procedure of GESC. The results indicated that design method of GESC higher ultimate bearing capacities compared with field loading test.

Preliminary Analysis of Stabilization of Forest Road Surface Using Geosynthetics (토목섬유를 이용한 임도 노면의 안정성 예비 분석)

  • Lee, Kwan-Hee;Oh, Se-Wook;Ko, Chi-Ung;Kim, Dong-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.51-60
    • /
    • 2015
  • This study conducted shear strength test and plate bearing test to look into the characteristics of bearing capacity using geosynthetics case on forest road surface. The shear strength test showed that the internal friction angle at the time when geosynthetics was used was measured larger on average than that in the unreinforced case. Therefore, using geosynthetics case produced more bearing capacity reinforcement effect. The result from the comparison test of internal friction angle by geosynthetics type revealed that the internal friction angle at the time when geotextile case was used was measured larger. That was attributable to the difference between the area of the total cross section of geotextile made in type of non-woven fabric and its material. Plate bearing test showed that the settlement at the time when geosynthetics was used was measured smaller than that in the unreinforced case. Therefore, using geosynthetics produced more bearing power reinforcement effect. The result from the comparison test showed that geogrid case was measured smaller than geotextile case. Henceforth, It is seemed that it will be necessary to keep studying the reinforcement engineering and process of forest road surface which fits the characteristics and conditions of geosynthetics to prevent forest road demage.