• Title/Summary/Keyword: Means of Using

Search Result 12,105, Processing Time 0.042 seconds

Approximate k values using Repulsive Force without Domain Knowledge in k-means

  • Kim, Jung-Jae;Ryu, Minwoo;Cha, Si-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.976-990
    • /
    • 2020
  • The k-means algorithm is widely used in academia and industry due to easy and simple implementation, enabling fast learning for complex datasets. However, k-means struggles to classify datasets without prior knowledge of specific domains. We proposed the repulsive k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, the RK-means enables to classifying of a dataset without domain knowledge. However, three main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for clusters confined in other clusters, which can cause cluster locking; we were unable to prove RK-means provided optimal convergence in the previous study; and RK-means shown better performance only normalize term and weight. Therefore, this paper proposes the advanced RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an initialization strategy for deploying cluster centroids and define a metric for the ARK-means algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. We show ARK-means feasibility experimentally using blob and iris datasets. Experiment results verify the proposed ARK-means algorithm provides better performance than k-means, k'-means, and RK-means.

A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization (적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘)

  • 강지혜;김성수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.516-524
    • /
    • 2004
  • In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.

Efficient Image Denoising Method Using Non-local Means Method in the Transform Domain (변환 영역에서 Non-local Means 방법을 이용한 효율적인 영상 잡음 제거 기법)

  • Kim, Dong Min;Lee, Chang Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, an efficient image denoising method using non-local means (NL-means) method in the transform domain is proposed. Survey for various image denoising methods has been given, and the performances of the image denoising method using NL-means method have been analyzed. We propose an efficient implementation method for NL-means method by calculating the weights for NL-means method in the DCT and LiftLT transform domain. By using the proposed method, the computational complexity is reduced, and the image denoising performance improves by using the characteristics of images in the tranform domain efficiently. Moreover, the proposed method can be applied efficiently for performing image denoising and image rescaling simultaneously. Extensive computer simulations show that the proposed method shows superior performance to the conventional methods.

Environmental Survey Data Modeling Using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.557-566
    • /
    • 2005
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering Is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

Environmental Survey Data Modeling using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.77-86
    • /
    • 2004
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

K-means Clustering using Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.759-768
    • /
    • 2005
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

An Efficient Clustering Method based on Multi Centroid Set using MapReduce (맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법)

  • Kang, Sungmin;Lee, Seokjoo;Min, Jun-ki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.494-499
    • /
    • 2015
  • As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.

A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means (적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2014
  • In this paper, we propose a hybrid approach towards multiple kernels interval type-2 possibilistic fuzzy C-means(PFCM) based on interval type-2 possibilistic fuzzy c-means(IT2PFCM) and possibilistic fuzzy c-means using multiple kernels( PFCM-MK). In case of noisy data or overlapping cluster prototypes, fuzzy C-means gives poor performance in comparison to possibilistic fuzzy C-means(PFCM). Moreover, to address the uncertainty associated with fuzzifier parameter m, interval type-2 possibilistic fuzzy C-means(PFCM) is used. Most of the practical data available are complex and non-linearly separable. In such cases using Gaussian kernels proves helpful. Therefore, in order to overcome all these issues, we have integrated multiple kernels possibilistic fuzzy C-means(PFCM) into interval type-2 possibilistic fuzzy C-means(IT2PFCM) and propose the idea of multiple kernels based interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK).

Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm (컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발)

  • 김광백;윤홍원;노영욱
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.87-101
    • /
    • 2002
  • In this paper, we proposes the car plate recognition and describe the parking control system using the proposed car plate recognition algorithm. The car plate recognition system using color information and fuzzy c-means algorithm consists of the extraction part of a car plate from a car image and the recognition part of characters in the extracted car plate. This paper eliminates green noise from car image using the mode smoothing and extract plate region using green and white information of RGB color. The codes of extracted plate region is extracted by histogram based approach method and is recognized by fuzzy c-means algorithm. For experimental, we tested 80 car images. We shows that the proposed extraction method is better than that from the color information of RGB and HSI, respectively. So, we can know that the proposed car plate recognition method using fuzzy c-means algorithm was very efficient. We develop the parking control system using the proposed car plate recognition method, which showed performance improvement by the experimental results.

  • PDF

ON A CLASS OF BIVARIATE MEANS INCLUDING A LOT OF OLD AND NEW MEANS

  • Raissouli, Mustapha;Rezgui, Anis
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.239-251
    • /
    • 2019
  • In this paper we introduce a new formulation of symmetric homogeneous bivariate means that depends on the variation of a given continuous strictly increasing function on (0, ${\infty}$). It turns out that this class of means includes a lot of known bivariate means among them the arithmetic mean, the harmonic mean, the geometric mean, the logarithmic mean as well as the first and second Seiffert means. Using this new formulation we introduce a lot of new bivariate means and derive some mean-inequalities.