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Abstract 
 

The k-means algorithm is widely used in academia and industry due to easy and simple 

implementation, enabling fast learning for complex datasets. However, k-means struggles to 

classify datasets without prior knowledge of specific domains. We proposed the repulsive 
k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using 

the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, 

the RK-means enables to classifying of a dataset without domain knowledge. However, three 
main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for 

clusters confined in other clusters, which can cause cluster locking; we were unable to prove 

RK-means provided optimal convergence in the previous study; and RK-means shown better 
performance only normalize term and weight. Therefore, this paper proposes the advanced 

RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an 

initialization strategy for deploying cluster centroids and define a metric for the ARK-means 

algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. 
We show ARK-means feasibility experimentally using blob and iris datasets. Experiment 

results verify the proposed ARK-means algorithm provides better performance than k-means, 

k’-means, and RK-means. 
 
 
Keywords:  Clustering, k-means algorithm, machine learning, repulsive force 
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1. Introduction 

The k-means algorithm is widely used in academia and industry due to easy and simple 

implementation, enabling fast learning for complex datasets [1-3]. K-means have been 
employed in many research areas, including big data, machine learning, and data mining [4-6]. 

However, k-means converges to numerous local minima under iterative clustering and has a 

high dependency upon the initial k cluster centers. The initial cluster centroids are usually 

selected randomly, but to ensure results quality, they should be selected using domain 
knowledge [7-9]. Unfortunately, practical datasets are often created from diverse domain areas, 

including smart cities, healthcare, and IoT, etc., forming very large datasets. Thus, it is difficult 

to select appropriate cluster values that reflect domain knowledge. Therefore, we propose a 
method to drive approximate k value without domain knowledge. 

In a previous study, we proposed the repulsive k-means (RK-means) algorithm [10] to 

resolve this problem. We assumed that the cluster centroids had repulsive forces between them, 

where each cluster had a mass proportion to the sum of errors between data and centroids. The 

key concept for RK-means was that clusters with larger mass represented a single data group 
better. Consequently, cluster centroids with larger mass would tend to maintain their current 

position, whereas cluster centroid with smaller mass would tend to search for positions to 

acquire larger mass. Thus, smaller mass cluster centroids were “pushed” by larger centroids, 
and hence the concept of a repulsive force, until these smaller clusters became amalgamated 

within larger mass clusters or empty. Empty cluster centroids were then deleted. The 

RK-means algorithm iterated this process and could accurately classify a dataset without 

requiring specific domain knowledge. 

However, although the RK-means algorithm resolved the k-means algorithm problem, three 
problems remained.  

• The RK-means algorithm includes an offset to the cluster repulsive force where a 

cluster is confined within other clusters, which can cause cluster locking.  

• We were unable to prove RK-means generated optimal convergence as optimal in 

the previous study. 

• RK-means showed better performance only normalize terms and weight. 

Therefore, we propose an advanced RK-means (ARK-means) algorithm to resolve these 

RK-means problems, establishing an initial strategy for deploying cluster centroids to resolve 

cluster locking. We also prove ARK-means convergence to be locally optimal, and redefine 
cluster mass and normalize terms to close to a general dataset.  

We show ARK-means algorithm feasibility experimentally compared with RK-means and 

k’-means algorithms using blob and iris datasets. Experimental results verify that the proposed 

ARK-means algorithm provides more accurate performance than the other algorithms.  

The rest of this paper is organized as follows. Section 2 discusses related work, including 

the methods to find k without domain knowledge, and briefly introduces RK-means. Section 3 
details the proposed ARK-means algorithm, and Section 4 presents the experimental results 

and subsequent performance evaluation. Section 5 summarizes and concludes the paper with 

remarks on future study directions. 
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2. Related Work 

2.1 Selecting k without domain knowledge 

The simplest approach to select appropriate k without domain knowledge is to use heuristic 
methods, i.e., gradually increase the initial cluster number. However, this approach rapidly 

becomes prohibitively computationally and tie expensive as dataset size increases [11,12]. 

Consequently, many previous studies have investigated how clustering could be accomplished 
with high accuracy without domain knowledge based on the finite mixture model [13-16]. 

Cheung et al. proposed rival penalized competitive learning (RPCL) based on competitive 

learning [17] to perform data clustering without knowing the exact number of clusters. They 

considered two centroids, winner and rival, the winner was the closest centroid and the rival 

was the second closest centroid for each datapoint. The rival was then reduced using the 
delearning rate factor to select the appropriate centroid. Although RPCL could perform data 

clustering without knowing the initial cluster number, the performance was not only sensitive 

to the preselected rival delearning rate but also could not guarantee convergence as optimal. 

Ma et al. [18] and Xie et al. [19] proposed rival penalized controlled competitive learning 

(RPCCL) and distance sensitive rival penalized competitive learning (DSRPCL), respectively, 
to improve the RPCL algorithm. RPCCL used a weight calculated from the distance between 

clusters to resolve the RPCL rival delearning rate, and DSRPCL was able to guarantee 

convergence as optimal using a cost function generalized from RPCL. These proposed 
approaches achieved better performance than previous algorithms, and hence have been used 

in diverse research areas [20-23]. 

Žalik et al. proposed the k’-means algorithm to improve the k-means algorithm [24]. Unlike 

existing the k-means algorithm, the k’-means algorithm composed of two main phases. In the 

first phase, the k’-means algorithm performs initial clustering and then, it executes 
preprocessing for assigning seed points into each cluster. Finally, the cost function assigned 

seed point is adjusted as a minimum. In this phase, the cluster with more data was selected as 

the winner, and clusters with fewer data became a centroid for an empty cluster, which were 
subsequently excluded from being winner candidates. Thus, k’-means selected the initial 

number of centroids without domain knowledge. 

Arthur et.al provided the k-means++ algorithm to resolve the learning results of unstable 

clustering in exiting the k-means algorithm [25]. To this end, the proposed k-means++ adjust 

sampling probability distribution. In other words, a point that has a larger distance than 
pre-selected points is selected as a higher probability in the phase of selecting initial points. 

Accordingly, initial points are selected as a point that has a larger distance than pre-selected 

points. However, the k-means++ algorithm cannot resolve the cluster locking problem as 

mention in Section 2.2. Consequently, we need a strategy of selecting the initial point to 
resolve clustering locking problem. 

2.2 RK-means Algorithm 

This section introduces our previously proposed repulsive k-means (RK-means) algorithm, 

which basically follows the classic k-means algorithm: (1) k initial centroids are randomly 

chosen from the dataset; (2) data points closest to each centroid create a cluster; (3) each 
centroid is moved to mean point of cluster; and (4) repeat steps (2) and (3) until the centroids 

stop moving. Unlike k’-means algorithm, the RK-means algorithm automatically creates 

empty clusters and then deletes the points using distance function which is consists of three 

phases. 
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    In these steps, RK-means changes step (3) to divide the dataset into N clusters,  {𝐱𝑖}𝑖=1
𝑁 , 

where each cluster consists of a d-dimensional vector 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑑}. The algorithm uses 
the same membership function as k-means, 

 

𝛾𝑛𝑘 = {
1  𝑤ℎ𝑒𝑟𝑒 𝑘 = argmin

𝑘′
(𝐱𝑛 − 𝝁𝑘′)2

0               𝑜𝑡ℎ𝑒𝑟𝑠        
 ,                                       (1) 

 

where 𝝁 is a d-dimensional vector that represents the current centroid position. 

However, the centroid position is defined by the sum of mean positions of data points 

included in a cluster, 

 

𝝁k =
∑ 𝛾𝑛𝑘𝐱𝑛

𝑁
𝑛=1

∑ 𝛾𝑛𝑘
𝑁
𝑛=1

+ 𝐷𝑘 ,                                                     (2) 

 

where the 𝐷𝑘 vector includes distance and direction of the kth repulsive force from another 

centroid, 

 

𝐷𝑘 = ∑ 𝐷𝑘𝑘′𝑘′≠𝑘 = ∑ 𝐶
1

‖𝝁𝑘−𝝁𝑘′‖
2 ∙

1

𝑀𝑘
∙

𝝁𝑘−𝝁𝑘′

‖𝝁𝑘−𝝁𝑘′‖𝑘′≠𝑘  ,                           (3) 

 

where C is a normalizing term; the rightmost term is the direction vector of repulsive force 

from other centroids; and  𝑀𝑘 is mass of kth cluster, 

 

𝑀𝑘 =
𝐽𝑘

𝐽𝑘′
=

∑ 𝛾𝑛𝑘‖𝝁𝑘−𝐱𝑛‖𝑁
𝑛=1

∑ 𝛾𝑛𝑘′
𝑁
𝑛=1 ‖𝝁𝑘′−𝐱𝑛‖

 ,                                                (4) 

 

where 𝐽 is the sum of errors for the cluster. 

Since RK-means cluster mass is a ratio relative to other clusters, we need to normalize the 

physical quantity. The sum of errors overall clusters, ∑ 𝐽𝑘𝑘 , is an appropriate normalization, 

but we use the reciprocal of ∑ 𝐽𝑘𝑘  because distance moved by an object is inversely 

proportional to the mass, i.e., 

 

𝐶 =  
1

∑ 𝐽𝑘𝑘
 .                                                                    (5) 

 

Eq. (2) allows a centroid with the largest mass to completely capture a data group and Eq. (5) 

ensures the repulsive force is normalized as it changes in every step.  

Although the RK-means algorithm improves k-means using repulsive force, three issues 

remain, as discussed in Section 1. Therefore, we proposed ARK-means, based on the existing 

RK-means algorithm to address cluster locking, proving convergence, and redefine cluster 
mass and normalization. 
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3. Advanced Repulsive Force k-means Algorithm 

3.1 Motivation 

This section discusses the motivation to apply the repulsive force concept to clustering 
problems. 

Suppose we place several magnets on a table, as shown in Fig. 1, where the outer rectangle 

represents the table, circles represent magnet position, central diameter represents their mass, 

and the dotted circles represent repulsive force. We assume all magnets have the same 

characteristics aside from their mass, i.e., density and magnetic flux density, and the magnetic 
field strength is proportional to magnet size (mass). 

Fig. 1-(b) shows the magnets moved to non-overlapping field positions after some time, 

pushed by their repulsive force (we do not consider inertia, gravitation or friction). In 

particular, the smallest mass magnet is pushed furthest from its initial position. 

 

 
(a) Initial magnet deployment on a table (b) Magnet position changes due to their 

repulsive forces after some time 

Fig. 1. Magnet position changes due to mutual repulsive forces 

 

The RK-means algorithm applies this of the repulsive force concept to clustering. Each 

cluster is considered as a magnet in vector space, where datasets are divided into several 
clusters. Consequently, cluster centroids are pushed between clusters, and each centroid 

creates a new cluster in the new position or is pushed out another position. Finally, centroids 

with smaller mass amalgamate with a data group of clusters with larger mass or become empty, 
and empty clusters are deleted. Thus, we can classify a dataset without an initial k derived from 

domain knowledge. 

3.2 Initialization 

Fig. 2 demonstrates the RK-means cluster locking problem. Since the repulsive force is 

represented as a vector the number of centroids depends on their initial position. RK-means 

selects initial centroid positions randomly. Hence, a cluster with small mass could be 
surrounded by larger mass clusters (Fig. 2), with the repulsive force from any larger cluster 

offset by force from other clusters. Consequently, after several time steps, the smaller cluster 

remains in the vector space rather than becoming empty or converging another data group. 
This creates a poor cluster and excludes the cluster members from the opportunity to explore.  
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Fig. 2. RK-means cluster locking problem 

 

Therefore, the proposed ARK-means algorithm randomly selects initial cluster values 

within a sufficiently small space (initial space), defined from the overall mean data position. 

Thus, no poor clusters can be created except for the special case where the data is perfectly 
symmetrically distributed from the center. 

To obtain the initial space, we first obtain the overall mean data position, 

 

𝐱𝑚𝑒𝑎𝑛𝑠 =  
1

𝑁
∑ 𝐱𝑖

𝑁
𝑖=1  ,                                                    (6) 

 

where 𝐱𝑖 = {𝑥1, … , 𝑥𝑑} for N d-dimensional data points. Then the vector {𝑣𝑖}𝑖=1
𝑑 , which 

moves a point on 𝐱𝑚𝑒𝑎𝑛𝑠  to a random position within the initial space boundary, is 
 

{𝑣𝑖}𝑖=1
𝑑 = {

𝑣𝑖 =  −𝜀 𝑜𝑟 𝜀     𝑖 =  𝐼 

𝑣𝑖 = ℝ ∈ [−𝜀, 𝜀]    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
,                                   (7) 

 

where 𝐼 ∈ {1, 2, … , 𝑑} is randomly selected, and 𝜀 is a sufficiently small positive real number 

(𝜀 > 0). Thus, {𝑣𝑖}𝑖=1
𝑑  has value −𝜀 or 𝜀 for the Ith component, with remaining components 

being random real numbers between −𝜀 and 𝜀. 

Consequently, the ARK-means initial centroid position is 
 

𝝁𝑖𝑛𝑖𝑡 =  𝐱𝑚𝑒𝑎𝑛𝑠 + {𝑣𝑖}𝑖=1
𝑑 .                                                  (8) 

 

3.3 Advanced Repulsive Force k-means Algorithm 

we modify the RK-means algorithm structure to prove ARK-means convergence. RK-means 

modified k-means centroid update (Section 2.2), whereas for ARK-means we modify the 
metric between clusters and data to 

 

d(𝐱, 𝝁𝑘) =  {𝐱 − (𝝁𝑘 + 𝐷𝑘)}2 ,                                             (9) 
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where x is a data vector and 𝝁 is a centroid vector. Thus, d(𝐱, 𝝁𝑘) is the square of the distance 

between the data 𝐱 and the position 𝝁𝑘 is pushed into due to the repulsive force from other 
centroids.  

To prove ARK-means convergence is optimal, we substitute Eq. (9) into the cluster 

membership (Eq. (1)) and cost function, and use the k-means centroid update rule (Section 2.2) 
rather than Eq. (2). Consequently, centroids are moved to positions that minimize the changed 

cost function, and hence ARK-means converges to the local optimum metric (Eq. (9)) at every 

step. However, this tuning does not affect algorithm performance. 

We also modify 𝐷𝑘  elements (Eq. (3)), which could affect algorithm performance. We 

redefine 𝑀𝑘 as the ratio of the error sum for the current and neighboring cluster divided by the 

root mean error, 

 

𝑀𝑘 =

𝐽𝑘√
𝐽

𝑘′

𝑁
𝑘′

𝐽𝑘′ √
𝐽𝑘
𝑁𝑘

 ,                                                             (10) 

 

where 𝑁𝑘 is the number of data points in the kth cluster. 
However, mean cluster error has become larger and mean neighboring cluster error smaller 

since the mass has become smaller. Therefore, cluster centroids can be moved large distances 

by the repulsive force via reducing the mass of cluster which is likely to include multiple data 
groups. And also, a cluster which is likely to include multiple data group can be dissembled by 

the way. Centroids also prefer to move to densely populated points. Therefore, we redefined C 

as 

 

𝐶 =  √
1

∑ 𝐽𝑘𝑘

𝜶
 ,                                                      (11) 

 

where 1 ≤ 𝛼 ∈ 𝕫, but generally 𝛼 = [1, 2]; to resolve C converging to 0 when cluster 

error sum is too large, by increasing 𝛼. 

3.4 Proposed ARK-means Algorithm 

Table 1 shows the ARK-means algorithm. 

 

Table 1. ARK-means algorithm 

1. Input: 
2.    Initial number of Cluster which is more than 𝐾′ , K 
3.    Data set, 𝐱𝑛=1

𝑁 ,  parameter, α 
4. Output:  
5.    Clustering results, 𝑠𝑛=1

𝑁   number of Cluster, 𝑐𝑢𝑟_𝑘 
6. -------------------------------------------------------------------------------------------------------------------- 
7. 𝑐𝑢𝑟_𝑘 = K, 𝑠𝑛=1

𝑁 = 0, 𝐸𝑡𝑜𝑡𝑎𝑙 = 0, 𝐷𝑘 = 0, 𝜀′ = 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
8. 𝐱𝑚𝑒𝑎𝑛𝑠 = 𝑚𝑒𝑎𝑛𝑠 𝑜𝑓 𝑎𝑙𝑙 𝐷𝑎𝑡𝑎 

9. Initialize centroid of clusters 𝝁𝑘=1
𝐾 =  𝐱𝑚𝑒𝑎𝑛𝑠 + {𝑣𝑖}𝑖=1

𝑑  
10. While true: 

11.      𝑑𝑎𝑡𝑎𝑘=1
𝑐𝑢𝑟_𝑘 = [], 𝐸𝑘=1

𝑐𝑢𝑟_𝑘 = 0, 

12.  
13.      For 𝑛=1 to N: 
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14.  𝑘 = argmin
𝑘

(‖𝐱𝑛 − 𝝁𝑘 − 𝐷𝑘‖2) 

15.          𝑑𝑎𝑡𝑎𝑘 . 𝑎𝑝𝑝𝑒𝑛𝑑(𝐱𝑛), 𝑠𝑛 = 𝑘 
16.          𝐸𝑘 += ‖𝐱𝑛 − 𝝁𝑘‖ 
17.      For 𝑘=1 to 𝑐𝑢𝑟_𝑘 
18.          If ‖𝑑𝑎𝑡𝑎𝑘‖ = 0: 
19.       remove 𝝁𝑘  and component of 𝝁𝑘  
20.      𝑐𝑢𝑟𝑘  −=  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝝁 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑠𝑡𝑒𝑝 
21.      For 𝑘=1 to 𝑐𝑢𝑟_𝑘 

22.          𝝁𝑘 =
∑ 𝑑𝑎𝑡𝑎𝑘,𝑛

‖𝑑𝑎𝑡𝑎𝑘‖
𝑛=1

‖𝑑𝑎𝑡𝑎𝑘‖
 

23.      𝐶 = √1/ ∑ 𝐸𝑘
𝑐𝑢𝑟𝑘

𝑘=1

𝛼
 

24.      𝐷𝑘 = ∑ 𝐶
𝐸𝑘′

‖𝝁𝑘−𝝁𝑘′‖
3

𝐸𝑘

∙ √
𝐸𝑘‖𝑑𝑎𝑡𝑎𝑘′ ‖

𝐸𝑘′‖𝑑𝑎𝑡𝑎𝑘‖
∙ 𝝁𝑘 − 𝝁𝑘′𝑘′≠𝑘  

25.      If |𝐸𝑡𝑜𝑡𝑎𝑙 − {∑ 𝐸𝑘
𝑐𝑢𝑟𝑘
𝑘=1 }

2
| <  𝜀′: 

26.          break 

27.      𝐸𝑡𝑜𝑡𝑎𝑙 =  {∑ 𝐸𝑘
𝑐𝑢𝑟𝑘
𝑘=1 }

2
 

28.  

29. end While 

30. return s, 𝑐𝑢𝑟_𝑘 

 

In the ARK-means algorithm, lines 2 and 3 describe input values, and line 5 describes the 

output value. Line 7 initializes return values and all of the variables used in the algorithm. 

Lines 8 and 9 apply the initial centroid cluster deployment strategy. Lines 11 to 14 describe the 
process to assign data to centroids that have the smallest metric (Eq. (9)). Line 15 updates 

𝑑𝑎𝑡𝑎𝑘 and 𝐸𝑘 on the cluster whenever data belongs to a centroid of the cluster. Lines 16 to 19 

show the deletion process for empty clusters. The kth centroid component includes a space to 
store data for kth cluster, such as the number of data points and error sum (line 16). Lines 20 

and 21 show the process to obtain the distance each cluster is pushed by repulsive force from 

all of the neighboring clusters. Lines 22 and 23 show the process to move centroids from their 

current location to a point with the smallest cost function. Lines 24 to 26 describe the 
termination condition, used in line 6; when the difference between total error sum of squares 

for the previous and current iteration is less than some pre-selected moderately small real 

number. 

4. Experimental Clustering Results and Analysis 

This section compares the proposed ARK-means algorithm experimentally with RK-means 
and k’-means algorithms using blob and iris datasets provided by scikit-learn [26]. We focus 

on the known problems discussed in Section: cluster locking, proof of optimal convergence, 

and redefine mass and normalization to close to the general dataset. Therefore, we performed 2 
experiments as follows. 

1. We used the blobs dataset to fix the 2-dimensional data positions and then compared 

ARK-means with RK-means algorithm performance to investigate poor cluster 

possibility concerning different the initial k. 

2. We compare ARK-means, RK-means, k-means, and k’-means algorithms for 

approximated k without applying domain knowledge using blobs and iris datasets for 
different termination conditions: 
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a. iteration maximum number 100, 

b. square error difference < 0.01%. 

We also used different parameters to select the initial centroids for each algorithm: 

• k-means uses the k-means++ method to stochastically select the centroid, 

• k’-means uses random value, and 

• ARK-means uses fixed value = 0.0025. 

The experiments were performed on a PC with Intel Core i-5-35550, 3.30GHz CPU and 

4GB DDR3 RAM. The ARK-means algorithm was developed in the Python 3.5.2, and random 

values were generated by NumPy 1.11.1 with seed = 1. 

4.1 Initialization Strategy Experiment 

If the blobs dataset receives the number of data N and class S, and the seed value as input 

values, it is possible to deploy data generated by N 2-dimensional data which comply with 
normal distribution, divided into S circular data group. 

Fig. 3 shows the likelihood for clusters using the blob dataset with class S = 4, N = 350 and 

initial k = 5 to 100. The result shown is the average over 1000 repeats, and poor clusters were 

defined as clusters with ≤ 20 data points. RK-means poor cluster possibility is strongly 

sensitive to increasing k, frequently defining smaller mass clusters encircled by larger 

mass neighbors. In contrast, the proposed ARK-means achieved significantly lower 

poor cluster possibilities, particularly for larger k. Thus, the proposed initial dispersion 

mechanism for ARK-means successfully avoids poor clustering. This is why the 

ARK-means algorithm fundamentally disperses the initial point for centroids due to the initial 

strategy proposed in this paper. 

 

 
Fig. 3. Possibility of poor clusters concerning the number of initial clusters (k) for the indicated 

algorithms 

4.2 Evaluation of the ARK-means Algorithm 

We compared ARK-means performance as follows: 
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1. accuracy compared with RK-means and k’-means using the blobs dataset with initial k 
= 5 and 10; 

2. accuracy for various combinations of initial k and seed points, S, using the blobs 

dataset; 

3. accuracy and time to complete to initial k compared with RK-means, k-means, and 

k’-means using the iris dataset. 

4.2.1 Performance Comparison 1 

We used the blobs dataset with S = 3, initial k = 5 and 10, and N = 500, 600, …, 1500. 

Experiments were repeated 30 times, and the presented data are the mean overall 30 repeats. 

Fig. 4 shows average accuracy concerning N. All algorithms provided broadly constant 

average performance irrespective of N, which confirms the algorithms all provided good 
performance. However, k’-means exhibited the lowest performance due to the upper bound 

problem for k, as discussed in Section 2, and also exhibited stronger sensitivity to N. In 

contrast, RK-means and ARK-means changed significantly depending on initial k, with 

RK-means exhibiting significantly lower performance than ARK-means because RK-means 
strongly depends on initial centroid positions. 

The ARK-means algorithm classified all data into three clusters regardless of the N, even 

when initial k > 3. Thus, the proposed ARK-means resolved both the upper bound and large 

dataset classification problems without domain knowledge. 

 

 

(a) Initial k = 5                                                      (b)  Initial k = 10 

Fig. 4. Algorithm accuracy concerning dataset size for different initial k 

4.2.2 Performance Comparison 2 

This experiment particularly focused on the proposed ARK-means feasibility. Therefore, we 

used the blobs dataset with N = 100, S = 3 to 6, and initial k = 10, 12, 14, and 16. The 

experiments were repeated 30 times, and presented numbers are averaged over the repeats. 
Table 2 shows mean accuracies for three cases: K’ = S, |K’−S| = 1, and |K’−S| > 1, where K’ is 

the final k from ARK-means. 

 

Table 2. Experimental results of ARK-means accuracy using the blobs dataset 

Number of initial 

centroids, k 

Number of seed points, S 

S=3 S=4 

𝑲′ = 𝑺 |𝑲′ − 𝑺| = 𝟏 |𝑲′ − 𝑺| > 𝟏 𝑲′ = 𝑺 |𝑲′ − 𝑺| = 𝟏 |𝑲′ − 𝑺| > 𝟏 

10 1.0 0.0 0.0 0.8 0.2 0.0 

12 0.97 0.03 0.0 0.77 0.23 0.0 
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14 0.97 0.03 0.0 0.85 0.12 0.03 

16 1.0 0.0 0.0 0.9 0.1 0.0 

 
S=5 S=6 

𝑲′ = 𝑺 |𝑲′ − 𝑺| = 𝟏 |𝑲′ − 𝑺| > 𝟏 𝑲′ = 𝑺 |𝑲′ − 𝑺| = 𝟏 |𝑲′ − 𝑺| > 𝟏 

10 0.53 0.47 0.0 0.07 0.77 0.17 

12 0.47 0.53 0.0 0.23 0.73 0.03 

14 0.23 0.77 0.0 0.3 0.63 0.07 

16 0.37 0.63 0.0 0.17 0.83 0.0 

K’ = final ARK-means cluster count 

 

4.2.2 Performance Comparison 3 

We compared ARK-means, RK-means, k-means, and k’-means using the iris dataset, 

comprising 503 4-dimensional feature vectors with 3 classes, setting initial k = 1 to 30, as 

shown in Fig. 5. 

Fig. 5-(a) shows that k-means achieved the lowest accuracy, which also rapidly decreased 
for k > 3, since poor cluster occurrence increased for larger initial k > S. RK-means achieved 

approximately 50% accuracy, confirming performance degradation of the initialization 

strategy. k’-means achieved approximately 60% accuracy, but this algorithm only found 2 
classes, rather than the actual 3. Thus, k’-means did classify the data well. ARK-means 

achieved approximately 75% accuracy due to correcting the cluster locking problem even for 

large initial k. Thus, the proposed initialization strategy for ARK-means resolved cluster 

locking. 
Fig. 5-(b) shows the algorithm time to complete for initial k. All algorithms show have 

similar performance to k-means, although ARK-means is slightly improved since convergence 

to local optimum is guaranteed and convergence speed is improved by the term obtained the 
formula of the ARK-means algorithm. 

 

 
(a) Algorithm accuracy for the number of 

initial clusters (k) 

(b) Algorithm tie to completion for the 

number of initial clusters (k) 
Fig. 5. Algorithm accuracy and speed using the iris dataset 

5. Discussion 

This paper explained several current classification problems and showed that the proposed 

ARK-means algorithm provided appropriate solutions. However, we must consider the 
remaining issues with the ARK-means algorithm.  
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Section 4.2 showed that ARK-means accuracy decreased when the number of classes in the 
dataset increased, and the final number of clusters was smaller than the actual number of 

classes in most cases. These problems due to overlapping in the limited space, a known 

characteristic of the blobs dataset. A common way to resolve this problem is to distribute the 

data in infinite space. However, the blobs dataset circular distribution has high center cluster 
density, which makes it difficult to sufficiently distinguish the clusters. Therefore, we need to 

consider how weights and normalization terms could be more precisely defined in the 

algorithm and add mechanisms to distinguish clusters with overlapping edges in different 
densities. These problems are not unique to the proposed ARK-means algorithm and remain 

generally challenging tasks to improve classification performance.  

Another problem is to define the exact dataset class from a data group linearly distributed in 

space. For ARK-means, more data groups linearly distributed in space make it more difficult 

to find the correct dataset class, i.e., ARK-means struggles to fill the data group by reducing 
the total cluster mass due to data on the elongated side being a significantly larger distance 

from the cluster centroid. This leads to misclassifications since ARK-means define repulsive 

force based on distance. Therefore, we need to consider another criterion to define repulsive 
forces and hence resolve this problem, e.g. similarity, which will be somewhat challenging. 

ARK-means struggles to identify approximate classes for outliers in the dataset, although 

outliers do not significantly affect selecting the approximate k. Outliers may occur in different 

data groups or completely separate from all data groups. For the former case, ARK-means 

could deal with outliers as an integrated cluster, and hence this has little effect on the selecting 
approximate k; whereas for the latter case, ARK-means recognizes the outlier as a separate 

cluster, and we could find a suitable approximate k by removing the outlier using filtering 

based on the number of data points in a cluster. Hence, outliers in the dataset should not affect 
dataset clustering without domain knowledge, which is the primary ARK-means purpose. 

Finally, Although the proposed ARK-means algorithm provides approximate k value 

without domain knowledge, it has weak points in practice. As shown in Fig. 4 and Fig. 5, jitter 

is generated by random seed when blob data is created by changing all of the distance between 

data every time. And also, the ARK-means algorithm has performance deviation according to 
k value given as initial value. Consequently, we can know the ARK-means algorithm has a 

different performance deviation by location of initial points. To resolve this phenomenon, a 

common way is to define initial k value based on several simulations of inputted data in a 

specific service domain. However, this way has a higher cost and time. Furthermore, we 
cannot know changing characteristics of data including distance and average. Accordingly, it 

is also a challenging task. 

6. Conclusion 

This paper proposed the ARK-means algorithm to resolve three specific significant problems 
with the RK-means algorithm. We performed three sets of experiments to verify ARK-means 

feasibility, with ARK-means achieving the highest performance compared with current 

k-means, k’-means, and RK-means algorithms. We also discussed remaining practical 

ARK-means issues and challenging tasks to resolve them. Therefore, we can conclude with 
confidence that the proposed ARK-means algorithm will improve classification performance 

for large datasets, selecting initial k without domain knowledge. Although we improve 

classification performance based on proposed our algorithm, there are remain challenge tasks 
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to apply the method in practice. To this end, future research will include statistics based on 
selecting an initial point to reduce performance deviation in practice.  
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