• Title/Summary/Keyword: Meander Line Antenna

Search Result 60, Processing Time 0.021 seconds

Implementation of Miniaturized 433MHz Antenna Using IFA Structure (IFA 구조를 이용한 소형 433MHz 안테나의 구현)

  • Kang, Sang-Won;Chang, Tae-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.203-208
    • /
    • 2014
  • In this paper, the antenna of a small active RFID for 433MHz is proposed, and the proposed antenna is a kind of built-in antenna, which uses IFA structure. The performance was improved by the change of the spacing between the feed point and short strip, inserting the meander line structure in a radiator, and varying the gap between the radiator and the ground plane in the proposed antenna. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. The frequency band of 433MHz Active RFID is from 433.67 to 434.17 MHz. There is a value of return loss less than -9.54 dB in 433MHz band of the active RFID, and the maximum antenna gain is -4.28dBi. The Jig size of the proposed antenna is $72{\times}44{\times}1mm$, and the size of the antenna area is $35.5{\times}19.5mm$. The result proved the possibility of the practical use on miniaturized 433MHz antenna using IFA structure that came from comparing and analyzing the measured and simulated data of the antenna.

A Design of Miniaturized Built-in Penta-Band Chip Antenna for Mobile Handset (휴대 단말기 내장형 5중 대역 칩 안테나 설계)

  • Choi, Hyeng-Cheul;Kim, Hyung-Hoon;Park, Jong-Il;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.288-297
    • /
    • 2007
  • The novel internal monopole chip antenna of penta-band operation for GSM850/GSM900/DCS/USPCS/WCDMA bands for mobile phones is proposed. This antenna occupies a small volume $8\times3.2\times20mm^3$ and is suitable to be embedded in a mobile phone as an internal antenna. The minimization of the proposed antenna was realized by using spiral line structure and meander line structure on FR-4 of dielectric$(\varepsilon_r=4.4)$. The designed antenna has the wide-band operation in the upper band by overlapping high order resonances. The measured bandwidth of this antenna (VSWR>3) is 150MHz$(1,030\sim1,180\;MHz)$ in the lower band operation and 650 MHz$(1,760\sim2,410\;MHz)$ in higher band operation. The measured radiation efficiency within bandwidth(VSWR 3:1) is over 50 %. The antenna has been designed by a commercial software HFSS.

Miniaturization of SIW-Based Linearly Polarized Slot Antennas for Software-Defined Radar

  • Han, Jun Yong;Yoon, Seong Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Two substrate integrated waveguide (SIW)-based antennas for the application of software-defined radar are proposed and investigated herein. It is usually well known that SIWs are easily integrated, lightweight, have low insertion loss, and low interference levels compared to conventional microstrip structures. The primary function of the proposed antennas is to transmit continuous waves for indoor motion detection, with the lowest amount of loss and an appropriate amount of gain. Moreover, the results of this study show that the size of the antenna can be reduced significantly (i.e., by about 40%) by applying a meander line structure. The operating frequencies of the proposed antennas are both within the industrial, scientific, and medical band (i.e., 2.4-2.4835 GHz). Measured results of return loss are -16 dB and -20 dB at 2.435 GHz and 2.43 GHz, respectively, and the measured gain is 8.2 dBi and 5.5 dBi, respectively. Antenna design and verification are undertaken through commercially available full electromagnetic software.

A Compact CPW-fed Antenna consisted of Three Folded Patches for Mobile Handsets (이동통신용 단말기를 위한 3개의 폴디드 패치로 이루어진 소형 CPW 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2773-2778
    • /
    • 2015
  • In this paper, the compact antenna with three folded patches for use in a number of bands of LTE, WCDMA, US-PCS, and WLAN at the same time is proposed. As the changes in widths of the 3 patches to widen the insufficient bandwidth are given, it is optimized for $S_{11}$<-6dB(VSWR<3). The CPW with a number of advantages is used in the proposed antenna. The proposed antenna is designed and fabricated with FR4 substrate to the size of $44.9{\times}35{\times}1mm^3$. Fabricated antenna has within $S_{11}$<-6dB under operating bands. And measured characteristics of radiation patterns and gains are shown under operating bands.

Design of a 900 MHz RFID Compact LTCC Package Reader Antenna Using Faraday Cage (Faraday Cage를 이용한 900 MHz RFID 소형 LTCC 패키지 리더 안테나의 설계)

  • Kim, Ho-Yong;Mun, Byung-In;Lim, Hyung-Jun;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, the proposed package antenna, which is meander line structure with short pin, is miniaturized to realize RF-SoP at 900 MHz RFID band. The RFID BGA(Ball Grid Array) chip is put in a cavity of LTCC Layers. The coupling and cross talk, which are happen between BGA chip and proposed package antenna, are reduced by faraday cage, which consists of ground and via fences, is realized to enhance the isolation between BGA chip and antenna. The proposed antenna structure is focused on the package level antenna realization at low frequency band. The novel proposed package antenna size is $13mm{\times}9mm{\times}3.51mm$. The measured resonance frequency is 0.893 GHz. The impedance bandwidth is 9 MHz. The maximum gain of radiation pattern is -2.36 dBi.

Design of a Broadband Compact WLAN Antenna with Meander-Line (Meander 타입 광대역 소형 WLAN 안테나 설계)

  • Kim, Tae Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.77-78
    • /
    • 2016
  • In this paper, small WLAN antenna was designed and investigated. Proposed antenna was configured for meandered type patch antenna ($20mm{\times}20mm$) that was mounted on RF4 dielectric substrate (relative permittivity 4.4, thick 1.6mm, tangent loss 0.025) size of $20mm{\times}60mm$. Antenna parameters was calculated by using the OpenFDTD simulator. As a result, frequency bandwidth satisfying the condition of VSWR(2:1) was 1.82-3.05GHz (1.23GHz, 44.6%) for considering WLAN.

  • PDF

A Compact Zeroth-Order Resonant Antenna on Vialess CPW Single Layer

  • Jang, Tae-Hee;Lim, Sung-Joon
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.472-474
    • /
    • 2010
  • In this letter, a novel zeroth-order resonant (ZOR) antenna on vialess co-planar waveguide (CPW) is proposed. It is based on a composite right/left-handed CPW transmission line. To achieve a compact size, this antenna utilizes the ZOR condition, and its reactive parameters determine the resonant frequency. Each unit cell is composed of a metallic top patch and meander lines. Since it is realized on the CPW single layer, the proposed antenna has the benefits of being a compact size and easy to fabricate. The bandwidth of 6.8% and efficiency of 62% are experimentally achieved. Its bandwidth is enhanced compared with other ZOR antennas.

Design of Two-port MIMO Antennas without Space for Isolation

  • Jo, Hyun-Dong;Park, Wee-Sang
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We propose a structure for a multiple input multiple output antenna which has no space for isolation. The antenna operates in a frequency range of 2.4-2.48 GHz and can achieve a high channel capability as a Bluetooth antenna. The MIMO antenna consists of two planar inverted F antennas with symmetric structure. We designed the proposed antenna using HFSS simulator, and we designed the fabricated antenna using PCB fabricator. The MIMO antenna's isolation $S_{21}{\leq}-10dB$ and reflection coefficient $S_{11}{\leq}-20dB$. The proposed antenna's specification satisfies Bluetooth antenna's criteria and has more space than the existing MIMO antennas, which have space for isolation.

Internal Monopole Antenna Design for Multiband Operation and SAR Analysis (내장형 모노폴 안테나 설계 및 SAR분석)

  • Shin Chan-Soo;Shin Ho-Sub;Kim Nam;Choi Jae-Ic;Park Ju-Derk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1190-1198
    • /
    • 2004
  • In this paper, meander-line planar monopole antenna mounted on PCS/IMT-2000/WLAN handset for SAR reduction is designed. Frequency characteristics and SAR value optimized with various design parameters are analyzed and designed. Designed internal monopole antenna mounted on the handset is simulated. The 1 g and 10 g peak average SARs of internal monopole antenna are 0.656 and 0.387 W/kg respectively. And internal monopole antenna and external monopole antenna attached on the handset are tested. As a result, internal monopole antenna 1 g and 10 g peak average SARs are 0.686 and 0.356 W/kg. And external monopole antenna's results are 1.33 and 0.812 W/kg, respectively. So internal monopole antenna has a about $50\%$ SAR reduction in comparison with external monopole antenna.

Design and implementation of Broadband Antenna/Diplexer for dual-band handsets (이중대역 단말기용 광대역 안테나 및 다이플렉서 설계 및 구현)

  • 김재호;김영태;박준석;천창율;임재봉;신재완;강현규;정중성;황희용
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.149-152
    • /
    • 2002
  • In this paper, We have designed an internal chip type-ceramic antenna and diplexer for dual-band handset applications. for increasing bandwidth, antennas used a meander line structure with L, C matching network. The designed diplexer is based on the multi-layered structure for the purpose of the LTCC applications. We have given a notch using resonator for elevated attenuation characteristics.

  • PDF