• Title/Summary/Keyword: Mean vector

Search Result 707, Processing Time 0.023 seconds

Land Cover Clustering of NDVI-drived Phenological Features

  • Kim, Dong-Keun;Suh, Myoung-Seok;Park, Kyoung-Yoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.201-206
    • /
    • 1998
  • In this paper, we have considered the method for clustering land cover types over the East Asia from AVHRR data. The feature vectors such that maximum NDVI, amplitude of NDVI, mean NDVI, and NDVI threshold are extracted from the 10-day composite by maximum value composite(MVC) for reducing the effect of cloud contaninations. To find the land cover clusters given by the feature vectors, we are adapted the self-organizing feature map(SOFM) clustering which is the mapping of an input vector space of n-dimensions into a one - or two-dimensional grid of output layer. The approach is to find first the clusters by the first layer SOFM and then merge several clusters of the first layer to a large cluster by the second layer SOFM. In experiments, we were used the 8-km AVHRR data for two years(1992-1993) over the East Asia.

  • PDF

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF

Sequential Motion Vector Error Concealment for H.264 Video Coding (H.264 동영상 표준 부호화 방식을 위한 순차적 움직임 벡터 오류은닉 기법)

  • Jung Jong-Woo;Kim Jae-Hoon;Hong Min-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.79-82
    • /
    • 2004
  • 본 논문에서는 H.264 표준 통영상 부호화 방식을 위한 순차적 움직임 벡터 오류 은닉 기법을 제안한다. H.264 표준 동영상 부호화 방식에서의 움직임 예측과정이 다양한 크기의 서브 매크로 블록 모드에 따라 자기 다른 움직임 벡터 개수를 갖게 되므로 움직임 벡터는 기존의 표준 부호화 방식에 비해 상대적으로 적은 영역을 대표하게 된다. 그러므로 이웃한 블록의 움직임 벡터간의 상관관계는 서브 매크로 블록의 크기가 작을수록 더 커지게 된다. 변화된 국부 통계 특성에 대한 적응도는 $\alpha-trimed\;mean$ 필터를 이용한 부호기의 부호화 순서를 따르는 순차적 움직임 벡터 오류 은닉기법의 성능을 좌우하는 가장 중요한 부분이다. 실험 결과를 통해 제안한 방식이 실시간 동영상 전송에 적합하며 기존 방식과 유사한 성능을 보임을 확인할 수 있었다

  • PDF

On a robust text-dependent speaker identification over telephone channels (전화음성에 강인한 문장종속 화자인식에 관한 연구)

  • Jung, Eu-Sang;Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.2
    • /
    • pp.57-66
    • /
    • 1997
  • This paper studies the effects of the method, CMS(Cepstral Mean Subtraction), (which compensates for some of the speech distortion. caused by telephone channels), on the performance of the text-dependent speaker identification system. This system is based on the VQ(Vector Quantization) and HMM(Hidden Markov Model) method and chooses the LPC-Cepstrum and Mel-Cepstrum as the feature vectors extracted from the speech data transmitted through telephone channels. Accordingly, we can compare the correct recognition rates of the speaker identification system between the use of LPC-Cepstrum and Mel-Cepstrum. Finally, from the experiment results table, it is found that the Mel-Cepstrum parameter is proven to be superior to the LPC-Cepstrum and that recognition performance improves by about 10% when compensating for telephone channel using the CMS.

  • PDF

SOME SPECIAL CURVES IN THREE DIMENSIONAL f-KENMOTSU MANIFOLDS

  • Majhi, Pradip;Biswas, Abhijit
    • The Pure and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.83-96
    • /
    • 2020
  • In this paper we study Biharmonic curves, Legendre curves and Magnetic curves in three dimensional f-Kenmotsu manifolds. We also study 1-type curves in a three dimensional f-Kenmotsu manifold by using the mean curvature vector field of the curve. As a consequence we obtain for a biharmonic helix in a three dimensional f-Kenmotsu manifold with the curvature κ and the torsion τ, κ2 + τ2 = -(f2 + f'). Also we prove that if a 1-type non-geodesic biharmonic curve γ is helix, then λ = -(f2 + f').

Comparisons of Multivariate Quality Control Charts by the Use of Various Correlation Structures

  • Choi, Sung-Woon;Lee, Sang-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.123-146
    • /
    • 1995
  • Several quality control schemes have been extensively compared using multivariate normal data sets simulated with various correlation structures. They include multiple univariate CUSUM charts, multivariate EWMA charts, multivariate CUSUM charts and Shewhart T$^{3}$ chart. This paper considers a new approach of the multivariate EWMA chart, in which the smoothing matrix has full elements instead of only diagonal elements. Performance of the schemes is measured by avaerage run length (ARL), coefficient of variation of run length (CVRL) and rank in order of signaling of off-target shifts in the process mean vector. The schemes are also compared by noncentrality parameter. The multiple univariate CUSUM charts are generally affected by the correlation structure. The multivariate EWMA charts provide better ARL performance. Especially, the new EWMA chart shows remarkable results in small shifts.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

A motion estimation algorithm with low computational cost using low-resolution quantized image (저해상도 양자화된 이미지를 이용하여 연산량을 줄인 움직임 추정 기법)

  • 이성수;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.81-95
    • /
    • 1996
  • In this paper, we propose a motio estiamtion algorithm using low-resolution quantization to reduce the computation of the full search algorithm. The proposed algorithm consists of the low-resolution search which determins the candidate motion vectors by comparing the low-resolution image and the full-resolution search which determines the motion vector by comparing the full-resolution image on the positions of the candidate motion vectors. The low-resolution image is generated by subtracting each pixel value in the reference block or the search window by the mean of the reference block, and by quantizing it is 2-bit resolution. The candidate motion vectors are determined by counting the number of pixels in the reference block whose quantized codes are unmatched to those in the search window. Simulation results show that the required computational cost of the proposed algorithm is reduced to 1/12 of the full search algorithm while its performance degradation is 0.03~0.12 dB.

  • PDF

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF