• Title/Summary/Keyword: Mean vector

Search Result 707, Processing Time 0.026 seconds

LONG-TERM PREDICTION OF SATELLITE ORBIT USING ANALYTICAL METHOD (해석적 방법에 의한 장기 위성궤도 예측)

  • 윤재철;최규홍;이병선;은종원
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.381-385
    • /
    • 1997
  • A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuracy of better than $pm35$ meters over a period of 3 month.

  • PDF

Extraction of water body in before and after images of flood using Mahalanobis distance-based spectral analysis

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.293-302
    • /
    • 2015
  • Water body extraction is significant for flood disaster monitoring using satellite imagery. Conventional methods have focused on finding an index, which highlights water body and suppresses non-water body such as vegetation or soil area. The Normalized Difference Water Index (NDWI) is typically used to extract water body from satellite images. The drawback of NDWI, however, is that some man-made objects in built-up areas have NDWI values similar to water body. The objective of this paper is to propose a new method that could extract correctly water body with built-up areas in before and after images of flood. We first create a two-element feature vector consisting of NDWI and a Near InfRared band (NIR) and then select a training site on water body area. After computing the mean vector and the covariance matrix of the training site, we classify each pixel into water body based on Mahalanobis distance. We also register before and after images of flood using outlier removal and triangulation-based local transformation. We finally create a change map by combining the before-flooding water body and after-flooding water body. The experimental results show that the overall accuracy and Kappa coefficient of the proposed method were 97.25% and 94.14%, respectively, while those of the NDWI method were 89.5% and 69.6%, respectively.

Optimal Stiffness Estimation of Composite Decks Model using System Identification (System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Statistical Image Feature Based Block Motion Estimation for Video Sequences (비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.

  • PDF

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

Sparse Channel Estimation Based on Combined Measurements in OFDM Systems (OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • We investigate compressive sensing techniques to estimate sparse channel in Orthogonal Frequency Division Multiplexing(OFDM) systems. In the case of large channel delay spread, compressive sensing may not be applicable because it is affected by length of measurement vectors. In this paper, we increase length of measurement vector adding pilot information to OFDM data block. The increased measurement vector improves probability of finding path delay set and Mean Squared Error(MSE) performance. Simulation results show that signal recovery performance of a proposed scheme is better than conventional schemes.

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.

Real-Time Eye Detection and Tracking Under Various Light Conditions (다양한 조명하에서 실시간 눈 검출 및 추적)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.456-463
    • /
    • 2004
  • Non-intrusive methods based on active remote IR illumination for eye tracking is important for many applications of vision-based man-machine interaction. One problem that has plagued those methods is their sensitivity to lighting condition change. This tends to significantly limit their scope of application. In this paper, we present a new real-time eye detection and tacking methodology that works under variable and realistic lighting conditions. Based on combining the bright-Pupil effect resulted from IR light and the conventional appearance-based object recognition technique, our method can robustly track eyes when the pupils ale not very bright due to significant external illumination interferences. The appearance model is incorporated in both eyes detection and tacking via the use of support vector machine and the mean shift tracking. Additional improvement is achieved from modifying the image acquisition apparatus including the illuminator and the camera.

SVM-based Utterance Verification Using Various Confidence Measures (다양한 신뢰도 척도를 이용한 SVM 기반 발화검증 연구)

  • Kwon, Suk-Bong;Kim, Hoi-Rin;Kang, Jeom-Ja;Koo, Myong-Wan;Ryu, Chang-Sun
    • MALSORI
    • /
    • no.60
    • /
    • pp.165-180
    • /
    • 2006
  • In this paper, we present several confidence measures (CM) for speech recognition systems to evaluate the reliability of recognition results. We propose heuristic CMs such as mean log-likelihood score, N-best word log-likelihood ratio, likelihood sequence fluctuation and likelihood ratio testing(LRT)-based CMs using several types of anti-models. Furthermore, we propose new algorithms to add weighting terms on phone-level log-likelihood ratio to merge word-level log-likelihood ratios. These weighting terms are computed from the distance between acoustic models and knowledge-based phoneme classifications. LRT-based CMs show better performance than heuristic CMs excessively, and LRT-based CMs using phonetic information show that the relative reduction in equal error rate ranges between $8{\sim}13%$ compared to the baseline LRT-based CMs. We use the support vector machine to fuse several CMs and improve the performance of utterance verification. From our experiments, we know that selection of CMs with low correlation is more effective than CMs with high correlation.

  • PDF