• 제목/요약/키워드: Mean Temperature Equation

검색결과 181건 처리시간 0.022초

벼의 생육온도에 따른 출엽양상과 출엽속도 추정모델 (Temperature Response and Prediction Model of Leaf Appearance Rate in Rice)

  • 이충근;이변우;윤영환;신진철
    • 한국작물학회지
    • /
    • 제46권3호
    • /
    • pp.202-208
    • /
    • 2001
  • 본 연구는 광안벼를 공시하여 동일한 일장 조건에서 온도에 따른 벼의 출엽 및 출수 반응을 검토하여 온도에 의한 출엽속도 추정모델을 설정하고자 하였던 바 결과를 요약하면 다음과 같다. 1. 13시간의 동일한 일장에서 최종엽수는 15엽으로 온도에 따라 변하지 않았다. 2. 출엽속도는 저온에서 고온으로 갈수록 증가하였으며, 고온일수록 발육진전에 따른 출엽속도 감소정도가 컸다. 3. 온도변화에 따른 출엽속도는 15-27$^{\circ}C$의 범위에서는 온도가 높아짐에 따라 직선적으로 높아지는 1차 회귀 관계를 보였다. 임계온도는 발육진전에 따라 높아지는 경향을 보였다. 4. 임계온도를 1$0^{\circ}C$로 하였을 때 유효적산온도와 출엽과의 관계는 Logistic 함수에 의하여 가장 잘 표현되었다($R^2$=0.995). 하루당 출엽속도는 다음의 식으로 표현되었다. (equation omitted) 여기서 dL/dt는 출엽속도, T$_{i}$는 일평균기온, L은 엽수이고 a, b, c는 상수로 각각 41.8, 1098.38, -0.9273이다. 5. 위의 출엽속도 추정모델에 의해 추정된 값은 모델설정에 이용되지 않은 실제 조사 출엽속도와 가 0.99이상으로 추정 정확도가 매우 높았다.

  • PDF

전북지역 쯔쯔가무시증 발생과 기후요소의 상호 관련성 (Association between Scrub Typhus Outbreaks and Meteorological Factors in Jeollabuk-do Province)

  • 강공언;마창진;오경재
    • 한국환경보건학회지
    • /
    • 제42권1호
    • /
    • pp.41-52
    • /
    • 2016
  • Objectives: Scrub typhus is one of the most prevalent vector-borne diseases. It is caused by Orientia tsutsugamushi, which is transmitted when people are bitten by infected chigger mites. This study aims at quantifying the association between the incidence of scrub typhus and meteorological factors in Jeollabuk-do Province over the period 2001-2015. Methods: Reported cases of scrub typhus were collected from the website of the Disease Web Statistical System supported by the Korea Centers for Disease Control and Prevention (KCDC). Simultaneous meteorological data, including temperature, rainfall, relative humidity, and sunshine duration were collected from the website of the National Climate Data Service System by the Korea Meteorological Administration. Correlation and regression analyses were applied to identify the association between the incidence of scrub typhus and meteorological factors. Results: The general epidemiological characteristics of scrub typhus in Jeollabuk-do Province were similar to those nationwide for sex, age, and geographical distribution. However, the annual incidence rate (i.e., cases per 100,000) of scrub typhus in Jeollabuk-do Province was approximately four times higher than all Korea's 0.9. The number of total cases was the highest proportion at 13.3% in Jeonbuk compared to other regions in Korea. The results of correlation analysis showed that there were significant correlations between annual cases of scrub typhus and monthly data for meteorological factors such as temperature and relative humidity in late spring and summer, especially in the case of temperature in May and June. The results of regression analysis showed that determining factors in the regression equation explaining the incidence of scrub typhus reached 46.2% and 43.5% in May and June. Using the regression equation, each 1oC rise in the monthly mean temperature in May or June may lead to an increase of 38 patients with scrub typhus compared to the annual mean of incidence cases in Jeollabuk-do Province. Conclusion: The result of our novel attempts provided rational evidence that meteorological factors are associated with the occurrence of scrub typhus in Jeollabuk-do. It should therefore be necessary to observe the trends and predict patterns of scrub typhus transmission in relation to global-scale climate change. Also, action is urgently needed in all areas, especially critical regions, toward taking steps to come up with preventive measures against scrub typhus transmission.

가로흐름 수역으로 방출되는 2차원 표면온배수 수치모형 비교연구 (A Comparative Study of Two-Dimensional Numerical Models for Surface Discharge of Heated Water into Crossflow Field)

  • 이남주;최흥식;이길성
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.40-50
    • /
    • 1994
  • 가로흐름이 존재하는 천해역으로 방출되는 표면온배수에 의한 온도장의 정확한 예측을 위한 근해역 2차원 수치모형을 개발하였다. 개발된 모형은 4-방정식 난류모델로서 열적 시간상수에 대한 정보를 얻을 수 없는 2-방정식 난류모델의 단점을 극복하기 위하여 변동온도 자승 평균항 및 그것의 감쇠율에 대한 전달방정식을 2-방정식 모델의 전달방정식에 추가한 모델이다. 또한, 부력생성항 및 난류 열플럭스항을 도입하여 연직방향 확산현상을 고려하고자 하였다. 개발된 수치모형을 간단한 단면을 갖는 개수로 정상류의 경우에 대하여 적용하였으며, 그 결과를 기존의 실험결과 및 2-방정식 난류모델을 사용한 수치계산결과와 비교하였다. 4-방정식 모형에 의한 계산결과가 2-방정식 모형보다 실험결과와 잘 일치하였으며, 제트 포획 및 안정화 영역에서 온배수의 물리적 특성을 잘 재현하였다.

  • PDF

Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석 (Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation)

  • 김원갑;정재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Development of a Predictive Mathematical Model for the Growth Kinetics of Listeria monocytogenes in Sesame Leaves

  • Park, Shin-Young;Choi, Jin-Won;Chung, Duck-Hwa;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Bahk, Gyung-Jin;Bae, Dong-Ho;Park, Sang-Kyu;Kim, Kwang-Yup;Kim, Cheorl-Ho;Ha, Sang-Do
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.238-242
    • /
    • 2007
  • Square root models were developed for predicting the kinetics of growth of Listeria monocytogenes in sesame leaves as a function of temperature (4, 10, or $25^{\circ}C$). At these storage temperatures, the primary growth curves fit well ($R^2=0.898$ to 0.980) to a Gompertz equation to obtain lag time (LT) and specific growth rate (SGR). The square root models for natural logarithm transformations of the LT and SGR as a function of temperature were obtained by SAS's regression analysis. As storage temperature ($4-25^{\circ}C$) decreased, LT increased and SGR decreased, respectively. Square root models were identified as appropriate secondary models for LT and SGR on the basis of most statistical indices such as coefficient determination ($R^2=0.961$ for LT, 0.988 for SGR), mean square error (MSE=0.l97 for LT, 0.005 for SGR), and accuracy factor ($A_f=1.356$ for LT, 1.251 for SGR) although the model for LT was partially not appropriate as a secondary model due to the high value of bias factor ($B_f=1.572$). In general, our secondary model supported predictions of the effects of temperature on both LT and SGR for L. monocytogenes in sesame leaves.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

Implications of Temperature and Humidity on the Moulting Patterns and Moulting Survival in the Silkworm, Bombyx mori L.

  • Lakshminarayana, P.;Naik, S.Sanker;Reddy, N.Sivarami
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권1호
    • /
    • pp.21-25
    • /
    • 2003
  • The implications of temperature $(25, 30 and 35{\times}1^{\circ}C)$ and relative humidity $(60, 70 and 80{\times}2%)$ on the moulting pattern, moulting duration and moulting survival were studied in the silkworm, Bombyx mori L. Larvae of two pure silkworm breeds, Pure Mysore (PM) and NB$_4$D$_2$and their hybrid, $PM{\times}NB_{4} D_{2}$ were reared under experimental conditions under natural day photoperiodic (LD 12:12) condition. Two developmental marker events in the fourth moulting, settling for moult (SM) and completion of moult (CM) occurred at or around the middle of the photophase. The computed mean vector (equation omitted), based on the circular statistics also confirmed the above. Temperature and humidity did not alter the moulting rhythmicity much. However, extreme temperature and humidity conditions reduced moulting survival in PM and $PM {\times}NB_{4} D_{2}$. Further, moulting survival reduced below the economic level in $NB_{4} D_{2}$. The temperature and humidity together seem to exert synergic impact on the moulting survival of the silkworm Bombyx mori, at least in $NB_{4} D_{2}$.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

좁은 환기구를 가진 사각공간에서의 혼합대류 열전달 (Mixed Convection Heat Transfer in a Rectangular Enclosure with Various Outlets)

  • 이철재;정한식;권순석
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.207-216
    • /
    • 1995
  • Flow and heat transfer characteristics of mixed convection heat transfer in a rectangular en-closure with various outlets are numerically investigated. The parameters considered here include Reynolds number, Grashof number and the position of outlet. The results show streamlines, isotherms, Nusselt numbers, velocity and temperature distributions. It has been shown that as Reynolds number increases, the size of cell decreases at Re$\leq$100 and increases at Re>100 for $Gr=10^4$. There is a minimum size of cells at Re=100, $Gr=10^4$. The maximum mean Nusselt number occurs at Re=400, $Gr=10^4$ and one right outlet. The mean Nusselt numbers can be formulated by the correlation equation $Nu=C{\cdot}Gr^a{\cdot}Re^b$.

  • PDF