• Title/Summary/Keyword: Mean Square Error method

Search Result 837, Processing Time 0.026 seconds

Forecasting of Passenger Numbers, Freight Volumes and Optimal Tonnage of Passenger Ship in Mokpo Port (목포항 여객수 및 적정 선복량 추정에 관한 연구)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • The aim of this paper is to forecast passenger numbers and freight volumes in 2005 and it is proposed optimal tonnage of passenger ship. The forecasting of passenger numbers and freight volumes is important problem in order to determine optimal tonnage of passenger ship, port plan and development. In this paper, the forecasting of passenger numbers and freight volumes are performed by the method of neural network using back-propagation learning algorithm. And this paper compares the forecasting performance of neural networks with moving average method and exponential smooth method As the result of analysis. The forecasting of passenger numbers and freight volumes is that the neural networks performed better than moving average method and exponential smoothing method on the basis of MSE(mean square error) and MAE(mean absolute error).

Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method (LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정)

  • Lee Do-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.677-690
    • /
    • 2006
  • The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.

Design-Based Small Area Estimation for the Korean Economically Active Population Survey (시군구 실업자 총계 추정을 위한 설계기반 간접추정법)

  • 정연수;이계오;이우일
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.1-14
    • /
    • 2003
  • In this study, we suggest the method of small area estimation based on the Economically Active Population Survey (EAPS) data in producing unemployment statistics for the local self-government areas (LSGAs) within large areas. The small area estimators considered are design-based indirect estimators such as the synthetic and composite estimators. The jackknife mean square error was used as a measure of accuracy of such small area estimators. The total unemployed and jackknife mean square errors of the 10 LSGAs within the large area of ChoongBuk region are derived from the estimation procedure suggested in this study, using EAPS data of December 2000. The reliability of small area estimators was assessed using the relative bias values and relative root mean square errors of these estimators. We find that under the current Korean EAPS system, the composite estimator turns out to be much more stable than other estimators.

Thin-layer Rewetting Equation for Short Grain Rough Rice (단립종(短粒種)벼의 박층흡습방정식(薄層吸濕方程式))

  • Jung, C.S.;Keum, D.H.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.38-43
    • /
    • 1987
  • An experimental study was conducted to develop a thin-layer rewetting equation of short grain rough rice of Akihikari variety. Four thin-layer rewetting equations were experimentally determined from $25^{\circ}C$ to $45^{\circ}C$ and 70%RH to 85%RH conditions. Diffusion, Henderson, Page, and Thompson equations widely used as thin-layer drying equations were selected. Experimental data were fitted to these equations using linear regression analysis except diffusion equation. The diffusivity in the diffusion equation was determined by optimization method. Four equations were highly significant. In order to compare the goodness of fit of each equation, the error mean square of each equawas calculated. The diffusion model was not a very good model because the error mean square was very large. The other three models showed the same level or error mean square and could predict satisfactorily the rewetting rate or short grain rough rice.

  • PDF

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Average Mean Square Error of Prediction for a Multiple Functional Relationship Model

  • Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 1984
  • In a linear regression model the idependent variables are frequently subject to measurement errors. For this case, the problem of estimating unknown parameters has been extensively discussed in the literature while very few has been concerned with the effect of measurement errors on prediction. This paper investigates the behavior of the predicted values of the dependent variable in terms of the average mean square error of prediction (AMSEP). AMSEP may be used as a criterion for selecting an appropriate estimation method, for designing an estimation experiment, and for developing cost-effective future sampling schemes.

  • PDF

The Constrained Least Mean Square Error Method (제한 최소 자승오차법)

  • 나희승;박영진
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.59-69
    • /
    • 1994
  • A new LMS algorithm titled constrained LMS' is proposed for problems with constrained structure. The conventional LMS algorithm can not be used because it destroys the constrained structures of the weights or parameters. Proposed method uses error-back propagation, which is popular in training neural networks, for error minimization. The illustrative examplesare shown to demonstrate the applicability of the proposed algorithm.

  • PDF

A Study on Adaptive Interference Cancellation System of RF Repeater Using the Grouped Constant-Modulus Algorithm (그룹화 CMA 알고리즘을 이용한 RF 중계기의 적응 간섭 제거 시스템(Adaptive Interference Cancellation System)에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1058-1064
    • /
    • 2008
  • In this paper, we proposed a new hybrid interference canceller using the adaptive filter with Grouped CMA(Constant Modulus Algorithm)-LMS(Least Mean Square) algorithm in the RF(Radio Frequency) repeater. The feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped CMA algorithm. This structure reduces the number of iterations fur the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller. Namely, MSE values of the proposed algorithm were lower than those of LMS algorithm by 2.5 dB and 4 dB according to step sizes. And the proposed algorithm showed fast speed of convergence and similar MSE performance compared to VSS(Variable Step Size)-LMS algorithm.

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI Algorithm (평균 제곱 투영 오차의 기울기에 기반한 가변 망각 인자 FAPI 알고리즘)

  • Seo, YoungKwang;Shin, Jong-Woo;Seo, Won-Gi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.177-187
    • /
    • 2014
  • This paper proposes a fast subspace tracking methods, which is called GVFF FAPI, based on FAPI (Fast Approximated Power Iteration) method and GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Lease Squares). Since the conventional FAPI uses a constant forgetting factor for estimating covariance matrix of source signals, it has difficulty in applying to non-stationary environments such as continuously changing DOAs of source signals. To overcome the drawback of conventioanl FAPI method, the GVFF FAPI uses the gradient-based variable forgetting factor derived from an improved means square error (MSE) analysis of RLS. In order to achieve the decreased subspace error in non-stationary environments, the GVFF-FAPI algorithm used an improved forgetting factor updating equation that can produce a fast decreasing forgetting factor when the gradient is positive and a slowly increasing forgetting factor when the gradient is negative. Our numerical simulations show that GVFF-FAPI algorithm offers lower subspace error and RMSE (Root Mean Square Error) of tracked DOAs of source signals than conventional FAPI based MUSIC (MUltiple SIgnal Classification).

Vibration of Non-linear System under Random Parametric Excitations by Probabilistic Method (불규칙 매개변수 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee, Sin-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.72-79
    • /
    • 2006
  • Vibration of a non-linear system under random parametric excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were An analytical method where the square mean of error was minimized was used An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.