Hamza, Ali;Shehzad, Danish;Sarfraz, Muhammad Shahzad;Habib, Usman;Shafi, Numan
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.3
/
pp.1051-1077
/
2021
The secure communication of information is a major concern over the internet. The information must be protected before transmitting over a communication channel to avoid security violations. In this paper, a new hybrid method called compressed encrypted data embedding (CEDE) is proposed. In CEDE, the secret information is first compressed with Lempel Ziv Welch (LZW) compression algorithm. Then, the compressed secret information is encrypted using the Advanced Encryption Standard (AES) symmetric block cipher. In the last step, the encrypted information is embedded into an image of size 512 × 512 pixels by using image steganography. In the steganographic technique, the compressed and encrypted secret data bits are divided into pairs of two bits and pixels of the cover image are also arranged in four pairs. The four pairs of secret data are compared with the respective four pairs of each cover pixel which leads to sixteen possibilities of matching in between secret data pairs and pairs of cover pixels. The least significant bits (LSBs) of current and imminent pixels are modified according to the matching case number. The proposed technique provides double-folded security and the results show that stego image carries a high capacity of secret data with adequate peak signal to noise ratio (PSNR) and lower mean square error (MSE) when compared with existing methods in the literature.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1103-1108
/
2023
In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.113-118
/
2024
In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.
In this paper, two estimation methods(least square estimation and maximum likelihood estimation) were compared for Weibull distribution and Type I censoring. Data obtained by Monte Carlo simulation were analyzed using two estimation methods and analysis results were compared by MSE(Mean Squared Error). Comparison results show that maximum likelihood estimator is better for censored data and complete data with more than 30 samples and least square estimator is better for small size complete data(less than and equal to 20 samples).
In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.6
/
pp.800-806
/
2018
Software efficiency is the probability of failure free use in operating environments, and is the most fundamental factor affecting software system stability. The malfunction of the computer system used in the information technology field may cause a significant loss in the related industry. Therefore, in this study, we analyze the attributes of software reliability models that depend on various hazard functions based on finite fault NHPP model with software failure time data. The hazard function pattern of proposed model is constant for the Goel-Okumoto model, and the Minimax and Rayleigh models follow the incremental pattern, but the hazard function increase value of the Minimax model is smaller than that of the Rayleigh model and the Goel-Okumoto model. Also, the Minimax model was relatively efficient because the true value error of the mean value function m(t) and the mean square error (MSE) of the Minimax model were smaller than those of the Rayleigh and Goel-Okumoto models. The results of this study are expected to be useful for software developers as basic information about the hazard function.
In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).
Samawi, Hani M.;Helu, Amal;Rochani, Haresh D.;Yin, Jingjing;Linder, Daniel
Communications for Statistical Applications and Methods
/
v.23
no.5
/
pp.385-397
/
2016
The stress-strength models have been intensively investigated in the literature in regards of estimating the reliability ${\theta}$ = P(X > Y) using parametric and nonparametric approaches under different sampling schemes when X and Y are independent random variables. In this paper, we consider the problem of estimating ${\theta}$ when (X, Y) are dependent random variables with a bivariate underlying distribution. The empirical and kernel estimates of ${\theta}$ = P(X > Y), based on bivariate ranked set sampling (BVRSS) are considered, when (X, Y) are paired dependent continuous random variables. The estimators obtained are compared to their counterpart, bivariate simple random sampling (BVSRS), via the bias and mean square error (MSE). We demonstrate that the suggested estimators based on BVRSS are more efficient than those based on BVSRS. A simulation study is conducted to gain insight into the performance of the proposed estimators. A real data example is provided to illustrate the process.
Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
Journal of Electrical Engineering and Technology
/
v.8
no.5
/
pp.975-983
/
2013
This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.11C
/
pp.1113-1121
/
2009
In this paper, the channel estimation and pilot sequence design technique of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in multi-cell environments are studied for situations in which the inter cell interference (ICI) is the dominant channel impairment. We design pilot sequence aiming at minimizing mean square error and propose the channel estimation technique correspond to the designed pilot sequences. The proposed pilot sequences employ the sequences with good correlation properties such as Chu sequence and through simulations, it is shown that channel estimation algorithm using designed pilot sequence is effective for mitigating the ICI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.