• Title/Summary/Keyword: Mean Square Error(MSE)

Search Result 296, Processing Time 0.023 seconds

Novel Secure Hybrid Image Steganography Technique Based on Pattern Matching

  • Hamza, Ali;Shehzad, Danish;Sarfraz, Muhammad Shahzad;Habib, Usman;Shafi, Numan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1051-1077
    • /
    • 2021
  • The secure communication of information is a major concern over the internet. The information must be protected before transmitting over a communication channel to avoid security violations. In this paper, a new hybrid method called compressed encrypted data embedding (CEDE) is proposed. In CEDE, the secret information is first compressed with Lempel Ziv Welch (LZW) compression algorithm. Then, the compressed secret information is encrypted using the Advanced Encryption Standard (AES) symmetric block cipher. In the last step, the encrypted information is embedded into an image of size 512 × 512 pixels by using image steganography. In the steganographic technique, the compressed and encrypted secret data bits are divided into pairs of two bits and pixels of the cover image are also arranged in four pairs. The four pairs of secret data are compared with the respective four pairs of each cover pixel which leads to sixteen possibilities of matching in between secret data pairs and pairs of cover pixels. The least significant bits (LSBs) of current and imminent pixels are modified according to the matching case number. The proposed technique provides double-folded security and the results show that stego image carries a high capacity of secret data with adequate peak signal to noise ratio (PSNR) and lower mean square error (MSE) when compared with existing methods in the literature.

Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1103-1108
    • /
    • 2023
  • In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

A Comparison of Estimation Methods for Weibull Distribution and Type I Censoring (와이블 분포와 정시중단 하에서의 MLE와 LSE의 정확도 비교)

  • Kim, Seong-Il;Park, Min-Yong;Park, Jung-Won
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.480-490
    • /
    • 2010
  • In this paper, two estimation methods(least square estimation and maximum likelihood estimation) were compared for Weibull distribution and Type I censoring. Data obtained by Monte Carlo simulation were analyzed using two estimation methods and analysis results were compared by MSE(Mean Squared Error). Comparison results show that maximum likelihood estimator is better for censored data and complete data with more than 30 samples and least square estimator is better for small size complete data(less than and equal to 20 samples).

A Trellis-based Technique for Blind Channel Estimation and Equalization

  • Cao, Lei;Chen, Chang-Wen;Orlik, Philip;Zhang, Jinyun;Gu, Daqing
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 2004
  • In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.

A Study on Comparative Evaluation of Application of Software Reliability Model Dependent on Various Hazard Functions (다양한 위험함수에 의존한 소프트웨어 신뢰모형의 적용에 대한 비교 평가에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.800-806
    • /
    • 2018
  • Software efficiency is the probability of failure free use in operating environments, and is the most fundamental factor affecting software system stability. The malfunction of the computer system used in the information technology field may cause a significant loss in the related industry. Therefore, in this study, we analyze the attributes of software reliability models that depend on various hazard functions based on finite fault NHPP model with software failure time data. The hazard function pattern of proposed model is constant for the Goel-Okumoto model, and the Minimax and Rayleigh models follow the incremental pattern, but the hazard function increase value of the Minimax model is smaller than that of the Rayleigh model and the Goel-Okumoto model. Also, the Minimax model was relatively efficient because the true value error of the mean value function m(t) and the mean square error (MSE) of the Minimax model were smaller than those of the Rayleigh and Goel-Okumoto models. The results of this study are expected to be useful for software developers as basic information about the hazard function.

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

Estimation of P(X > Y) when X and Y are dependent random variables using different bivariate sampling schemes

  • Samawi, Hani M.;Helu, Amal;Rochani, Haresh D.;Yin, Jingjing;Linder, Daniel
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.385-397
    • /
    • 2016
  • The stress-strength models have been intensively investigated in the literature in regards of estimating the reliability ${\theta}$ = P(X > Y) using parametric and nonparametric approaches under different sampling schemes when X and Y are independent random variables. In this paper, we consider the problem of estimating ${\theta}$ when (X, Y) are dependent random variables with a bivariate underlying distribution. The empirical and kernel estimates of ${\theta}$ = P(X > Y), based on bivariate ranked set sampling (BVRSS) are considered, when (X, Y) are paired dependent continuous random variables. The estimators obtained are compared to their counterpart, bivariate simple random sampling (BVSRS), via the bias and mean square error (MSE). We demonstrate that the suggested estimators based on BVRSS are more efficient than those based on BVSRS. A simulation study is conducted to gain insight into the performance of the proposed estimators. A real data example is provided to illustrate the process.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

Optimal Pilot Sequence Design based on Chu sequences for Multi-cell Environments (다중 기지국 환경에서의 MIMO-OFDM 시스템을 위한 최적 파일럿 시퀀스 설계 방법)

  • Kang, Jae-Won;Rhee, Du-Ho;Byun, Il-Mu;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1113-1121
    • /
    • 2009
  • In this paper, the channel estimation and pilot sequence design technique of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in multi-cell environments are studied for situations in which the inter cell interference (ICI) is the dominant channel impairment. We design pilot sequence aiming at minimizing mean square error and propose the channel estimation technique correspond to the designed pilot sequences. The proposed pilot sequences employ the sequences with good correlation properties such as Chu sequence and through simulations, it is shown that channel estimation algorithm using designed pilot sequence is effective for mitigating the ICI.