• Title/Summary/Keyword: Mean Load

Search Result 975, Processing Time 0.029 seconds

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Efficiency of Sustained Work and Its Influence on Physiological Responses in Young Bulls of Hariana Cattle

  • Yadav, A.S.;Dhaka, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1062-1066
    • /
    • 2001
  • Studies were carried out on forty young bulls of the Hariana breed (around 18 months of age) selected on the basis of their dam's milk yield at the animal farm of CCS HAU, Hisar during the period 1993-1999. Since animals showed variation in capacity to work over prolonged periods, they were subjected to regimes of carting without load and with 8 qtls. of load for three hours. The study revealed that maximum change took place in the pulse rate, followed by respiration rate and rectal temperature. The mean fatigue score for pulling an empty cart ranged between 1.66 to 2.20 after two hours work, and 2.36 to 2.73 after three hours work. For a cart loaded with 8 qtls., the corresponding ranges were 2.90 to 3.36 and 3.40 to 4.10, respectively. These results indicated that the animals under experiment had the capacity to pull moderate load (8 qtls.) for about two hours without showing any serious effect on the ability to recover and soon to work again.

Runoff Pollutant Load of Agricultural Watershed (농업유역에서의 유출 오염부하량 조사)

  • Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.1 s.18
    • /
    • pp.77-83
    • /
    • 2003
  • This study was carried out to provide the basic information for the water quality management of the Sumjin River Basin. The Chooryeongchon stream watershed was selected and the parameters representing water quality were investigated from May 1999 to September 2002, periodically. Yearly mean runoff ratio to the rainfall amount of the watershed was analysed as $26.6{\sim}58.8%$. Temporal variation of water quality constituents such as water temperature, pH, EC, total nitrogen, total phosphorus were analysed. The result showed that pH ranged $5.7{\sim}7.7$, EC $54{\sim}167\;{\mu}S/cm$, COD $0.8{\sim}18.1\;mg/L$, respectively. Total-N and total-P concentration ranged from 0.89 to 5.19 mg/L and from 0.0004 to 0.030 mg/L, respectively. The relationships between runoff and mass load were derived and showed high linear relationships.

Short-term Load Forecasting Using Artificial Neural Network (인공신경망을 이용한 단기 부하예측모형)

  • Park, Moon-Hee
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.68-76
    • /
    • 1997
  • This paper presents a new neural network training algorithm which reduces the required training time considerably and overcomes many of the shortcomings presented by the conventional back-propagation algorithm. The algorithm uses a modified form of the back-propagation algorithm to minimize the mean squared error between the desired and actual outputs with respect to the inputs to the nonlinearities. Artificial Neural Network (ANN) model using the new algorithm is applied to forecast the short-term electric load. Inputs to the ANN are past loads and the output of the ANN is the hourly load forecast for a given day.

  • PDF

A Study on the Prediction of the Fatigue Life of a Lug through the Finite Element Analysis (FEA를 이용한 Lug의 피로 수명 평가에 관한 연구)

  • 이원석;이현우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.88-95
    • /
    • 1998
  • The purpose of this study is to predict the life of a Lug under the real service load history. The techniques of predicting a fatigue life under load spectrum are discussed and some are developed. The stress is calculated by multiplying the stress under unit force with the Finite Element Analysis. The cycles are counted by the Rainflow counting method and then the mean stress effect is considered by the suggested conversion function. The Manson's Double Linear Damage Rule is used as the cummulative damage method.

  • PDF

Frequency Analysis of EMG Signals using Power Spectral Density (전력 스펙트럼 밀도를 이용한 근전도 신호의 주파수 해석)

  • 박상희;변윤식
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.19-30
    • /
    • 1985
  • This paper describes the EMG signals in frequency domain using power spectral density, The changes in the moan frequency can represent the energy distribution which results from changing in load before and during fatigue. Most of EMG signal power spectrum is located between 10 and 200Hz. Shifts of the high-energy regions of the power spectra can be inferred from the changes in the mean frequency. If the load is increased without fatigue-ocurring, the high frequency regions have more energy than the low frequency regions. And if load is increased during fatigue, the low frequency regions have more energy than the high frequency regions.

  • PDF

Short-Term Load Forecasting Using Multiple Time-Series Model Including Dummy Variables (더미변수(Dummy Variable)를 포함하는 다변수 시계열 모델을 이용한 단기부하예측)

  • 이경훈;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.450-456
    • /
    • 2003
  • This paper proposes a multiple time-series model with dummy variables for one-hour ahead load forecasting. We used 11 dummy variables that were classified by day characteristics such as day of the week, holiday, and special holiday. Also, model specification and selection of input variables including dummy variables were made by test statistics such as AIC(Akaike Information Criterion) and t-test statistics of each coefficient. OLS (Ordinary Least Squares) method was used for estimation and forecasting. We found out that model specifications for each hour are not identical usually at 30% of optimal significance level, and dummy variables reduce the forecasting error if they are classified properly. The proposed model has much more accurate estimates in forecasting with less MAPE (Mean Absolute Percentage Error).

An Adaption of Pattern Sequence-based Electricity Load Forecasting with Match Filtering

  • Chu, Fazheng;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.800-807
    • /
    • 2017
  • The Pattern Sequence-based Forecasting (PSF) is an approach to forecast the behavior of time series based on similar pattern sequences. The innovation of PSF method is to convert the load time series into a label sequence by clustering technique in order to lighten computational burden. However, it brings about a new problem in determining the number of clusters and it is subject to insufficient similar days occasionally. In this paper we proposed an adaption of the PSF method, which introduces a new clustering index to determine the number of clusters and imposes a threshold to solve the problem caused by insufficient similar days. Our experiments showed that the proposed method reduced the mean absolute percentage error (MAPE) about 15%, compared to the PSF method.

Comparison of Estimation Method of Pollutant Unit Loads from Bridge Area (교량지역의 다양한 비점오염물질 원단위 산정방법 비교)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.597-604
    • /
    • 2011
  • This research analyzed the runoff patterns and estimated unit loads of selected pollutatnts using monitored data conducted for three years in a bridge area. Three estimating methods; the arithmetic average method, the regression method and the rainfall class method were used to estimate the unit load. Results of three estimating methods were compared with the unit pollutant loads from landuses in Korea and the unit pollutant loads from urban watersheds in Milwaukee, USA. Unit load using the arithmetic mean method were found to be overestimated. In terms of TSS, unit loads of two estimate were half lower than that of USA. Estimated TN and TP unit loads of three estimate were lower than that of Ministry of Environment in Korea.

A Study for the Selection Method of Control Area of Nonpoint Pollution Source (비점오염원 관리지역의 선정 기법에 관한 연구)

  • Park, Sanghyun;Jeong, Woohyeok;Yi, Sangjin;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.