• Title/Summary/Keyword: Mean Film Temperature

Search Result 96, Processing Time 0.033 seconds

Structural and Optical Properties of ZnS Thin Films Fabricated by Using RF Sputtering and Rapid Thermal Annealing Process for Buffer Layer in Thin Film Solar Cells (박막태양전지 버퍼층 적용을 위해 RF 스퍼터링 및 급속열처리 공정으로 제작한 황화아연 박막의 구조적 광학적 특성)

  • Park, Chan-Il;Jun, Young-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.665-670
    • /
    • 2020
  • Buffer layer in CIGS thin-film solar cells improves energy conversion efficiency through band alignment between the absorption layer and the window layer. ZnS is a non-toxic II-VI compound semiconductor with direct-transition band gaps and n-conductivity as well as with excellent lattice matching for CIGS absorbent layers. In this study, the structural and optical properties of ZnS thin films, deposited by RF magnetron sputtering method and subsequently performed by the rapid thermal annealing treatment, were investigated for the buffer layer. The zincblende cubic structures along (111), (220), and (311) were shown in all specimens. The rapid thermal annealed specimens at the relatively low temperatures were polycrystalline structure with the wurtzite hexagonal structures along (002). Rapid thermal annealing at high temperatures changed the polycrystalline structure to the single crystal of the zincblende cubic structures. Through the chemical analysis, the zincblende cubic structure was obtained in the specimen with the ratio of Zn/S near stoichiometry. ZnS thin film showed the shifted absorption edge towards the lower wavelength as annealing temperature increased, and the mean optical transmittance in the visible light range increased to 80.40% under 500℃ conditions.

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.

The Study of Steering Effect in Multilayer Growth (두꺼운 박막 성장시 Steering 효과 연구)

  • Seo J.;Kim J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.410-420
    • /
    • 2006
  • The dynamic effects, such as the steering and the screening effects during deposition on an epitaxial growth is studied by kinetic Monte Carlo simulation. In the simulation, we incorporates molecular dynamic simulation to rigorously take the interaction of the deposited atom with the substrate atoms into account, We find three characteristic features of the surface morphology developed by grazing angle deposition: (1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric slopes of mound sides, Regarding their dependence on both deposition angle and substrate temperature, a reasonable agreement of the simulated results with the previous experimental ones is found. The characteristic growth features by grazing angle deposition are mainly caused by the inhomogeneous deposition flux due to the steering and screening effects, where the steering effects play the major role rather than the screening effects. Newly observed in the present simulation is that the side of mound in each direction is composed of various facets instead of all being in one selected mound angle even if the slope selection is attained, and that the slope selection does not necessarily mean the facet selection.

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Characteristics and Fabrication of Multi-Layered Piezoelectric Ceramic Actuators for Speaker Application (스피커 응용을 위한 적층형 압전 세라믹 액츄에이터 제조 및 특성)

  • Lee, Min-seon;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.601-607
    • /
    • 2016
  • Piezoelectric thick films of soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material (S55) were fabricated using a conventional tape casting method. Ag-Pd electrodes were printed on the piezoelectric film at room temperature and all 5 layered films with a dimension of $12mm{\times}16mm$ were successfully laminated for a multi-layered piezoelectric ceramic actuator. The laminated specimens were co-fired at $1,100^{\circ}C$ for 1 h. A flat layered and dense microstructure was obtained for the $112{\mu}m$ thick piezoelectric actuator after sintering process. Thereafter, a prototype piezoelectric speaker was fabricated using the multi-layered piezoelectric ceramic actuator which can operate as a bimorph. Its SPL (sound pressure level) characteristic was also evaluated for speaker application. Frequency response revealed that the output SPL with a root mean square voltage of 10 V increased gradually to the highest peak of 87.5 dB for 1.5 kHz and exhibited a relatively stable behavior over the measured frequency range (${\leq}20kHz$) at a distance of 10 cm, implying that the fabricated piezoelectric speaker is potential for speaker applications.

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Structural and Optical Characterizations of VO2 Film on Graphene/Sapphire Substrate by Post-annealing after Sputtering (그래핀/사파이어 기판상에 스퍼터링 후 열처리된 VO2박막의 구조 및 광학적 특성변화 연구)

  • Kim, Keun Soo;Kim, Hyeongkeun;Kim, Yena;Han, Seung-Ho;Bae, Dong Jae;Yang, Woo Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • $VO_2$ is an attractive thermochromic material, in which its electrical and optical properties can be switched by the structural phase-transition about $68^{\circ}C$. Recently, graphene is also a rising material which is researched as a transparent electrode because of its superior electrical and optical characteristics. In this respect, we try to fabricate the hybridized films using $VO_2$ and graphene on transparent sapphire substrate and then we investigate a structure and characterize an optical property for the samples as a function of temperature. According to the result of IR-transmittance analysis of $VO_2$ films as a function of temperature, the graphene-supported sapphire substrates are better about 10% than the bare sapphire substrates. The mean phase transition temperatures are also decreased as the number of graphene-layers increased and the hysteresis of phase transitions are narrowed.

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

Budbreak, Floral Bud and Fruit Characteristics of Kiwifruit as Affected by Various Windbreaks (파풍망 종류에 따른 키위의 발아, 개화 및 과실 특성)

  • Kwack, Yong-Bum;Kim, Hong Lim;Lee, Mockhee;Rhee, Han-Cheol;Kwak, Youn-Sig;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • BACKGROUND:Kiwifruit growers build their vineyards using many windbreaks to protect their kiwifruit vines from defoliation injury by strong winds such as typhoon. In this study, we have compared fruit quality, budbreak rate and floral bud as affected by windbreaks. And also we surveyed several microclimate indices of kiwifruit orchard depending on the covering materials of arch-type windbreaks. METHODS AND RESULTS: Five different windbreak materials including polyethylene film (PE), blue- and white-colored nets were tested in pipe-framed archtype kiwifruit vineyards as the covering materials. Photosynthetically active radiation (PAR), annual mean temperature (AMT) and chill unit (CU) as well as fruit quality were compared among the covering materials. In all treatments, annual PAR was more than $400{\mu}mol\;m^{-2}s^{-1}$, in which kiwifruit leaf could reach its maximum photosynthesis, since the leaves were emerged. Annual mean temperature was greater in 0.1 mm-PE covering as much as $1-2^{\circ}C$ than other windbreaks. In CU calculated by three different models, all windbreaks showed more than 1400 CU that is fully fulfilled CU for kiwifruit rest completion. There were no difference in budbreak rate among the covering materials. Fruit weight was heavier in 0.1 mm-PE and white-net (4 mm) than other windbreaks. CONCLUSION: Regardless of the windbreak materials, the PAR quantity was enough for kiwifruit photosynthesis. And CU for kiwifruit rest completion was fully achieved in all treatments. However, with respect to fruit weight, quantity of PAR, and AMT, etc., It is highly recommended for kiwifruit growers to choose 0.1 mm-PE and white-net (4 mm) as for their windbreaks materials.