• Title/Summary/Keyword: Mean Artery Blood Pressure(MABP)

Search Result 8, Processing Time 0.018 seconds

Effect of Kyungisan in on the Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Rats (균기산(勻氣散)이 흰쥐의 국소뇌혈류량 및 평균혈압에 미치는 효과)

  • Jung, Jong-An;Hong, Seok;Jun, Sang-Yun
    • Herbal Formula Science
    • /
    • v.15 no.2
    • /
    • pp.89-98
    • /
    • 2007
  • Kyungisan (KGS) has been used in oriental medicine for many centuries as a therapeutic agent for treatment of stroke caused by deficiency of qi(氣虛). This study was performed to evaluate effects of KGS extract on the regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in rats. The result of this study were as follow ; 1. KGS significantly increased rCBF irrelevant to MABP in normal rats, 2. To prescribe KGS after pretreatment with indomethacin(IDN) decreased rCBF as compared with control group to administered only KGS in normal rats. But the change of MABP is not significantly as compared with control group. 3. To prescribe KGS after pretreatment with methylen blue( MTB) decreased MABP and rCBF as compared with control group to administered only KGS in normal rats. Especially, it significantly decreased rCBF. These results suggest that KGS increase rCBF by enlargement diameter of pial artery in brain. The active mechanism of KGS is related with prostaglandin activated by cyclooxygenase. So, I suggest that KGS has an anti-ischemic effect through the improvement of cerebral blood flow and can be used for stroke.

  • PDF

Efects of Gagam-ChongMeong-Tang on Changes in Cerebral Blood Flow in Rats (가감총명탕이 흰쥐의 뇌혈류량 변화에 미치는 영향)

  • Kim, Hyung-Woo;Kim, Kyung-Yoon;Cha, Dae-Yeon;Lee, Sang-Yeong;Kim, Gye-Yep;Kim, Hang-Jung;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.302-306
    • /
    • 2008
  • ChongMyeong-Tang(CMT) have been used clinically to treat patient with amnesia and dementia. In addition, CMT have been also used for examinee to improve learning ability in Korea. This experimental study was designed to investigate the effects of Gagam-ChongMeong-Tang(GCMT) to improve the retentive faculty and learning ability in terms of Cerebral blood flow(rCBF) and Mean Artery Blood Pressure(MABP) in rats. In our study, we investigated that increasing doses of GCMT (1 ug/ml, 10 ug/ml, 100 ug/ml, and 1000 ug/ml) affect the level of rCBF and MABP in rats. In our results, treatment with GCMT elevated level of rCBF in dose dependant manner. Cantraray, level of MABP was lowered by treatment with GCMT. The involved mechanisms in rCBF are guanylate cyclase pathway. During the period of cerebral re-perfusion, GCMT treated group showed stability of rCBF compared to control group. These results imply that GCMT increased rCBF through dilation of pial artery. And related mechanisms are involved in guanylate cyclase pathway.

Effects of Angelicae Gigantis and Cynanchum wilfordii Hemsley Extract on the Changes of Cerebral Flow (당귀와 백수오 추출물이 뇌혈류 변화에 미치는 영향)

  • Jeong, Hyun Woo;Yang, Dong Hyuk;Song, Min Sun;Jeong, Jong Gil;Lee, Sang Young;Choi, Chan-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.446-452
    • /
    • 2013
  • This study was designed to investigate the effects of Angelicae Gigantis and Cynanchum wilfordii Hemsley extract (AAC) on the changes of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. The results were as follows. AAC significantly increased rCBF but significantly decreased MABP in a dose-dependent manner in normal rats. The increase of AAC-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and AAC-induced MABP was decreased by pretreatment with methylene blue. In cerebral ischemics, rCBF was stably improved by AAC (10 mg/kg, i.p.) during the period of cerebral reperfusion, which was contrasted with the findings of rapid and marked increase in the control group. These results suggest that AAC can increase rCBF in the normal state, as well as improve the stability of rCBF in cerebral ischemic state.

Effects of Hwadamtongrak-Tang on the changes of Cerebral Flow in the rats (화담통락탕(化痰通絡湯)이 백서의 뇌혈류변화 및 허혈성 뇌손상에 미치는 영향)

  • Park, Hyoung-Bae;Yang, Seung-Jung;Wei, Tung-Sheun;Park, Hye-Sun;Jeon, Sang-Yoon;Hong, Seok
    • Herbal Formula Science
    • /
    • v.14 no.1
    • /
    • pp.105-119
    • /
    • 2006
  • Objectives & Methods : This present study was performed to investigate the effect of Hwadamtongrak-Tang extract (HTT) on the regulation of cerebral hemodynamics in terms of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP)] in normal and cerebral ischemic rats. Also the effects of HTT on changes in local blood flow, inhibition of LD H activity in neuronal cells, and levels of cytokine production in the serum were determined in the ischemic rat model. The major findings are summarized below. Results : 1. HTT significantly increased rCBF in a dose-dependent manner, but MABP was not changed by HTT treatment. These results suggest that HTT may increase rCBF by dilating cerebral arterial diameter. 2. HTT-induced increase in rCBF was blocked by pretreatment with cyclooxygenase inhibitor indomethacin (IDN, 1 mg/kg, i.p.) and MABP was significantly increased by ID N. 3. Pretreatment of methylene blue $(MTB,\;10\;{\mu}g/kg,\;i.p.)$, an inhibitor of guanylate cyclase, significantly decreased both rCBP and MABP in HTT-treated rats. 4. HTT treatment significantly increased rCBP to a stable level during the period of cerebral reperfusion. 5. HTT significantly inhibited LD H activity in neuronal cells, suggesting a neuroprotection by HTT. 6. Serum interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ levels were significantly decreased in the femoral artery 1 hr after middle cerebral arterial occlusion in HTT-treated rats. IL-10 levels in the serum were significantly increased by HTT treatment whereas transforming growth factor $(TGF)-{\beta}$ levels were similar between HTT-treated and control groups. 7. Serum interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ levels were significantly decreased in the femoral artery 1 hr after reperfusion in HTT-treated rats. Serum IL-10 levels were significantly decreased in HTT-treated rats compared with the control group, and no significant changes in $(TGF)-{\beta}$ in the serum were observed by HTT treatment. Conclusions: The present data suggest that HTT may have an anti-ischemic effect via the improvement of cerebral hemodynamics and thus protect the brain from ischemic damage.

  • PDF

Experimental Effects of Sibjeondaebo-tang and Gamy-Sibjeondaebo-tang on Cerebral Hemodynamics in Cerebral Ischemia Rats (십전대보탕(十全大補湯)과 가미십전대보탕(加味十全大補湯)이 뇌허혈 흰쥐의 뇌혈류역학에 미치는 실험적 영향)

  • Lee, Sang Young;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • This Study was designed to investigate the effects of Sibjeondaebo-tang (SDT) and Gamy-Sibjeondaebo-tang (GST, Sibjeondaebo-tang adding Cervi Pantotrichum Cornu) on the improvement in regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. And, It was to investigate the effects of the SDT and GST with the change of histologic examination through the BDNF in the hippocampus CA1. In changes of cerebral hemodynamics, SDT and GST significantly increased rCBF in a dose-dependent manner but decreased MABP in normal rats. In mechanism of cerebral hemodynamics, Increase of GST-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and Decrease of GST-induced MABP was significantly increased by pretreatment with methylene. These results suggested that the action of GST was mediated by guantlate cyclase pathway. In cerebral ischemics, the rCBF was stably improved by SDT (10 mg/kg, i.p.) significantly and stably increased by GST (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrast with the findings of rapid and marked increase in Control group. These results suggested that GST had anti-ischemic action in cerebral ischemic state. In histological examination through TTC stain, Sample A group and Sample B group decreased discoloration in the cortical part at $28^{th}$ day after MCAO induction. In immunohistochemistric response of BDNF, Sample A group and Sample B group increased respondent effect at $28^{th}$ day after MCAO induction. These results suggest that GST can Increase rCBF in normal state, as well as improve the stability of rCBF in cerebral ischemic state. Furthermore, methylene blue inhibitor study suggested the mechanism of blood flow enhancement by GST may be mediated by guanylate cyclase pathway.

Effects of Geopungjeseub-tang(Gufengchushi-tang) on the Changes of Cerebral Blood Flow in Rats (거풍제습탕이 뇌허혈이 유발된 백서의 뇌혈류 변화에 미치는 영향)

  • Hong, Seok;Jeon, Sang-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.596-604
    • /
    • 2005
  • Objectives : Geopungjeseub-tang(Gufengchushi-tang) has been used in oriental medicine for many centuries as a therapeutic agent for hemiplegia caused by deficiency of qi(氣虛) and damp phlegm(濕痰). This study was performed to evaluate effects of Geopungjeseub-tang extract(GJT) on hemodynamics[regional cerebral blood flow(rCBF), pial arterial diameter(PAD), mean arterial blood pressure(MABP), heart rate(HR)] in normal rats and in rats with cerebral ischemia by middle cerebral artery(MCA) occlusion. Also, effects of adrenergic ${\beta}-receptor$, cyclooxygenase on response to GJT were evaluated. Methods : Laser-doppler flowmetry(LDF) measured changes of rCBF, MABP and HR. Video microscope and width analyzer measured changes in PAD. Results : rCBF and PAD increased after treatment with GJT(10mg/kg, i.v.) during the period of cerebral reperfusion, and pretreatment with indomethacin raised rCBF and PAD increased after treatment with GJT during the same period as above. Pretreatment with propranolol decreased rCBF, but increased after GJT treatment, but raised PAD increased after GJT treatment during this period of reperfusion. Conclusion : CR caused diverse responses were observed in rCBF and PAD after treatment with GJT. ACF action is mediated by adrenergic ${\beta}-receptor$ and cyclooxygenase. Result suggest that GJT has an anti-ischemic effect through the improvement of cerebral hemodynamics and has theraputic potential for cerebral apoplexy.

  • PDF

The Effects of Jayun-tang on the Changes of Cerebral Flow (자윤탕이 뇌혈류 변화에 미치는 영향)

  • Kim Yong-Jin;Jeon Sang-Yoon;Ann Jeong-Jo;Choi Chang-Won;Hong Seok
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.188-203
    • /
    • 2005
  • Objectives : This study was designed to investigate the effects of Jayun-tang extract (JYT) on the change of cerebral hemodynamics [regional cerebral blood flow (rCBF), pial arterial diameter (PAD) and mean arterial blood pressure (MABP)] in normal and cerebral ischemic rats, na to determine the mechanisms of action of JYT. Methods : We investigated whether JYT inhibits lactate dehydrogenase activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. Results : 1. JYT significantly increased rCBF and PAD in a dose-dependent manner, but MABP was not changed by injecting JYT. These results suggested JYT significantly increased rCBF by dilating PAD. 2. The JYT-induced increase in rCBF was significantly inhibited from pretreatment with indomethacin (1mg/kg, i.p.), an inhibitor of cyclooxygenase and methylene blue $(10{\mu}g/kg, i.p.)$, an inhibitor of guanylate cyclase. 3. The JYT-induced dilation in PAD was significantly inhibited from pretreatment with indomethacin, but was increased by pretreatment with methylene blue. 4 The JYT-induced increase in MABP was reduced by pretreatment with indomethacin and methylene blue. 5. JYT significantly inhibited lactate dehydrogenase activity in neuronal cells. These results suggest that JYT prevented the neuronal death. 6. Both rCBF and PAD were significantly and stably increased by JYT $(10{\mu}g/kg,\;i.p.)$ during the Period or cerebral reperfusion, which contrasted with the findings of rapid and marked increase in the control group. 7. In cytokine production in the serum drawn from femoral artery 1hr after middle cerebral artery occlusion, the sample group showed significantly decreased production of $IL-1\beta$ and $TNF-\alpha$ as well as increased production of IL-10 and $TGF-\beta$ compared with rho control group. 8. In cytokine production in the serum drawn from femoral artery 1hr after reperfusion, the sample group showed significantly decreased production of $IL-1\beta$ and $TNF-\alpha$ as well as significantly increased production of IL-10 and $TGF-\beta$ compared with the control group. Conclusions : JYT mediated by cyclooxygenase had an inhibitive effect on brain damage by inhibiting lactate dehydrogenase activity, $IL-1\beta$ and $TNF-\alpha$ production, and by accelerating IL-10 and $TGF-\beta$ production. The author feels that JYT had anti-ischemic effects through the improvement of cerebral hemodynamics and inhibitive effects on brain damage.

  • PDF

The Experimental Study of Sunkihwalhyul-Tang against Inhibitive Effects on the Brain Ischemia (순기활혈탕(順氣活血湯)의 뇌허혈(腦虛血) 억제효과(抑制效果)에 관한 실험적(實驗的) 연구(硏究))

  • Hong, Seok;Ann, Jeong-Jo;Jeong, Sang-Yoon;Choi, Chang-Won;Jeong, Young-Deuk
    • Herbal Formula Science
    • /
    • v.13 no.1
    • /
    • pp.49-69
    • /
    • 2005
  • This Study was designed to investigate the effect of Sunkihwalhyul -Tang extract(SHT) on the change of cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD) and mean arterial blood pressure(MABP)] in normal and cerebral ischemic rats, and further to determine the mechanisms of action of SHT on hemodynamics. In addition, this study was designed to investigate whether SHT inhibits lactate dehydrog enase(LDH) activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. The results were as follows 1. SHT significantly increased rCBF and PAD in a dose-dependent manner, but MABP was not changed by injecting SHT. These results suggest that SHT significantly increases rCBF by dilating PAD. 2. The SHT-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin(IDN, 1 mg/kg, i.p.), an inhibitor of cyclooxygenase and methylene blue(MTB, $10{\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase. 3. The SHT-induced dilation in PAD was significantly inhibited by pretreatment with IDN and MTB. 4. The SHT-induced some increase in MABP was significantly increased by pretreatment with IDN. These results suggest that the mechanism of action of SBT is mediated by guanylate cyclase. 5. Both rCBF and PAD were significantly and stably increased by SHT(10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. 6. SBH significantly inhibited LDH activity in neuronal cells. These results suggest that SHT prevents the neuronal death. 7. In cytokine production in the senlm drawn from femoral artery 1 hr after middlecerebral arterial occlusion, sample group showed significantly decreased production of IL-1$\beta$ production, decreased production TNF-$\alpha$ and increased Production of IL-10 compared with control group. 8. In cytokine production in the serum drawn femoral artery 1 hr after reperfusion, sample group showed significantly decreased production of IL-1$\beta$ and TNF-$\alpha$ as wellas significantly increased production of IL10 compared with control group. These results suggest that SHT mediated by guanylate cyclase has inhibitive effect on the brain damage by inhibiting LDH activity, IL-1$\beta$ and TNF-$\alpha$ production, and by accelerating IL-10 production. The present author thinks that SHT has an anti-ischemic effects through the improvement of cerebral hemodynamics and inhibitive enects on the brain damage.

  • PDF