• 제목/요약/키워드: McCamy

검색결과 2건 처리시간 0.014초

광원과 CCT 조합에 따른 LED 조명기구의 CCT 비교 분석 (Comparison and Analysis about CCT of LED Luminaire According to Light Sources and Compounded CCT)

  • 김인태;김유신;최안섭
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.1-8
    • /
    • 2010
  • Recently, adjustable CCT(Correlated Color Temperature) luminaire for the human circadian rhythm and room atmosphere has been developed. Accurate CCT control is needed in the luminaire for the human circadian rhythm. Therefore, appropriate CCT calculation method for each of fluorescent lamps and white LEDs was examined using three CCT calculation methods in this study. To make accurate CCT combination, CCT for two different CCT lamps was separately measured. And this study compared and analyzed proportionally calculated CCT value with measured value from the compounded luminaire with the two lamps.

Tension Leg Platform의 동적응답에 관한 연구 (Dynamic Response of Tension Leg Platform)

  • 여운광;편종근
    • 대한토목학회논문집
    • /
    • 제5권1호
    • /
    • pp.21-30
    • /
    • 1985
  • Tension Leg Platform (TLP)이란 평행위치로부터 일정 범위내에서 움직임으로 인하여 외 력의 효과를 완화시키는 compliant 구조물인 동시에, 기인장력을 받고 있는 연직 anchor cable 이 있으므로 부력이 자중을 초과하게 되는 안정한 platform 이다. 일반적으로 부체는 해상조건이 험할수록, 그리고 수심이 깊어질수록 동요가 심해지는데 TLP는 기인장 cable로 인하여 심해에서도 비교적 동요가 작아서 최근 대수심구조물의 총아로 각광받고 있다. 일찌기 Paulling 등이 TLP 거동의 예측을 위하여 수정된 Morison 방정식을 사용하는 선형동유체력합성방법을 발표하였다. 그러나 만일 TLP의 각 부재가 Morison 방정식의 가정이 성립할 수 없을 정도로 크다면 새로운 해석이 필요하다 하겠다. 일본의 Tanaka는 이런 경우에 McCamy-Fuchs 이론의 결과치를 이용하였으나, 완전한 해석이라기 보다는 일종의 간편법이라 하겠다. 본고에서는 큰 배수용적을 가진 연직부체가 있고, 이론적 해석의 결과를 검토해 볼 수 있는 수리모형 실험 결과가 있는 Deep Oil Technology (DOT) 회사의 TLP를 대상으로 하였다. 이 TLP는 부력을 전담하고 있는 연직축대칭 원통과 이들을 연결하고 있는 세부재로 이루어져 있어 축대칭부분에는 축대칭 Green 함수를 사용하여 동유체력을 구하고 세부재는 종래의 수정된 Morison 방정식의 항력항을 선형화하여 동유체력을 구하였다. 그리하여 부재의 각 미소부분에서 구한 힘들을 TLP의 중심에 원점을 둔 좌표계로 옮겨 동적응답을 구한 것이다. 본 해석에서 부재 상호간의 작용은 무시하였으며 단지 부재간의 거리효과만 고려하였다. 따라서 사용된 좌표계는 전체 (Global) 좌표계, 지점 (Local) 좌표계 및 파랑 (Wave) 좌표계 등이었고 각 좌표계간의 변환식이 필요하였다. 전체적인 해석정도는 선형이론으므로 케이블의 강성도 역시 선형적으로 구하였으며, 앞서 언급했다시피 Morison 방정식의 비선형항인 항력항은 Fourier 해석으로 선형화 하였다. 이러한 Fourier 해석은 잘 알려져 있는 Lorentz 원리와 같다고 볼 수 있다. 세부재의 경우 접선력은 무시하였고 수입자의 운동에 의한 부채에 대한 수직력만 고려하였다. 여기서 파랑좌표계에서 지점좌표계로의 좌표변환이 주의를 요하고 있다. 이제 이렇게 구한 각 힘들을 전체좌표 계에서 6개의 자유도별로 운동방정식에 대입하면 각 자유도별 동적응답이 구하여지는 것이다. DOT TLP의 Surge mode에 대한 동적응답을 실험치와 비교하여 본 결과, 세부재에 대한 고려를 뺄 수 없음을 알 수 있었다. 이는 연직축대칭 부체의 크기가 그리 크지 않으므로 인한 것이며, TLP의 원형의 경우에는 보다 더 관성력이 지배적일 것으로 사료된다.

  • PDF