• 제목/요약/키워드: Maxwell model

검색결과 256건 처리시간 0.024초

General Relativistic Effects on Pulsar Radiation

  • Kim, Dong-Hoon;Trippe, Sascha
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.37.1-37.1
    • /
    • 2017
  • We consider a magnetic dipole model of a pulsar and investigate general relativistic effects on electromagnetic radiation from the pulsar. The general relativistic modifications should be found applicable to many well-known issues in pulsar astronomy. Among other things, the modifications of Goldreich-Julian model and subpulse drift would be of significant interest and challenging issues. The electromagnetic fields in the pulsar magnetosphere are computed by solving Maxwell's equations defined in the strongly curved spacetime around the pulsar, hence containing the properties of strong gravitational effects. On top of these effects, we also investigate the effects from rotation and obliqueness of the pulsar to work out the general relativistic versions of Goldreich-Julian model and subpulse drift.

  • PDF

CFD Simulation Tool for Anode-Supported Flat-Tube Solid Oxide Fuel Cell

  • Youssef M. Elsayed.;Lim, Tak-Hyoung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • 전기화학회지
    • /
    • 제9권4호
    • /
    • pp.151-157
    • /
    • 2006
  • A two-dimensional numerical model to study the performance of anode-supported flat-tube solid oxide fuel cell (SOFC) far the cross section of the cell in the flow direction of the fuel and air flows is developed. In this model a mass and charge balance, Maxwell-Stefan equation as well as the momentum equation by using, Darcy's law are applied in differential form. The finite element method using FEMLAB commercial software is used for meshing, discritization and solving the system of coupled differential equations. The current density distribution and fuel consumption as well as water production are analyzed. Experimental data is used to verify a predicted voltage-current density and power density versus current density to judge on the model accuracy.

Effect of constitutive equations on theoretical analysis in melt spinning process

  • Kim, Seong-Cheol;Oh, Tae-Hwan;Han, Sung-Soo;Lyoo, Won-Seok
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.149-153
    • /
    • 2009
  • Profile development of the melt spinning process of poly(ethylene terephthalate) (PET) was simulated by a numerical method under the consideration of two constitutive equations of Newtonian and upper convected Maxwell (UCM) models. The viscoelastic characteristics of the polymer were considered via UCM constitutive equation that considered relaxation time as a function of temperature and molecular weight. The UCM model predicted the diameter profile better than the Newtonian, while velocity development was slower than the Newtonian model. Viscoelasticity played an important role in accurately predicting diameter profile. However, even though neck-like deformation was observed in the UCM model, the exact position of the deformation under high speed spinning was not obtained.

점탄성 감쇠기의 간극 변화에 따른 동특성에 대한 실험적 연구 (Experimental research of dynamic behaviors at viscoelastic damper with change of orifice)

  • 윤종민;임상혁;박화용;김창열;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.744-749
    • /
    • 2011
  • Silicon oil in viscous fluid damper has a viscoelastic feature that show stiffness besides damping. These properties depend on frequency and are non-linear. A lot of research has been conducted in order to identify viscoelastic damper with mathematical model. Fractional Derivative Maxwell Model has been widely used, but this model did not explain the effect of damper size change on the damper performance. In this paper, the experimental study was conducted to validate damper's dynamic behaviors when total damper's size is changed while maintaining same aspect ratio and orifice size.

  • PDF

나노 유체(Nanofluids)의 열전도도 (Thermal Conductivities of Nanofluids)

  • 장석필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1388-1393
    • /
    • 2004
  • Investigators have been perplexed with the thermal phenomena behind the recently discovered nanofluids, fluids with unprecedented stability of suspended nanoparticles although huge difference in the density of nanoparticles and fluid. For example, nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

  • PDF

포화도에 따른 다공성 매질의 유효열전도도 변화 예측 모델 (A New Structural Model for Predicting Effective Thermal Conductivity of Variably Saturated Porous Materials)

  • 차장환;구민호;김영석
    • 한국지구과학회지
    • /
    • 제32권6호
    • /
    • pp.629-639
    • /
    • 2011
  • 구조모델의 하나인 Maxwell-Eucken(ME) 모델을 이용하여 불포화 다공성 매질의 유효열전도도를 예측할 수 있는 새로운 모델을 제시하였다. 제시된 모델은 기질, 물 그리고 공기가 각각 연속상으로 존재하는 경우에 해당하는 3개 ME모델의 선형조합으로 표현되며, 매질 내에서 각 성분의 상대적 연속성 정도를 나타내는 '연속성계수'의 개념을 도입하여 선형방정식의 계수로 이용하였다. 기질의 연속성계수는 공극률과 선형의 관계를, 물과 공기의 연속성계수는 포화도와 선형 또는 비선형의 관계를 갖는 것으로 가정하였다. 공극구조가 알려진 3개 시료에 대한 열전달 모사 결과와 3개 시료의 열전도도 실험 결과를 이용하여 제시된 모델의 신뢰성을 평가하였다. 6개 시료에 대한 모델 예측값의 결정계수($R^2$)는 선형모델의 경우 0.86-0.98, 비선형모델의 경우 0.88-0.99로 나타나 모델의 예측 신뢰도가 매우 높은 것으로 분석되었다. 또한, 6개 시료에 대한 분석 결과를 이용하여 기질의 연속성계수와 공극률과의 관계식을 제시하였다. 따라서 본 예측모델은 기질의 열전도도, 공극률 및 포화도로부터 불포화 다공성 매질의 유효열전도도를 계산하는 데 이용될 수 있다.

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

헬리콘 플라즈마에서 이온 펌핑 효과의 영향에 대한 수치적 해석 연구 (Numerical studied on consequenses of the ion pumping effect in helicon plasmas)

  • 조수원;박인호;최성을;권명회
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.353-360
    • /
    • 1999
  • The global balance model is applied to investigate the transient behavior of the electron density and temperature in helicon plasmas. The power absorption calculated from the solutions of the Maxwell equations is used in solving the power balance equation. A balance model for the neutral gas is also considered to fins its density self-consistently. It is turned out that the numerical results reasonably explain consequences of the ion pumping effect including the occurrence of two distinct modes of pulsed helicon discharge which have been observed experimentally. The behavior of the discharge parameters are fond to be primarily dependent on the power absorption and the gas flow rate, but the pressure controls the electron density and temperature of the final steady state as well as the transient state even with the same flow rate. Finally, it is shown that the electron density virtually the linear relationship between the density and the magnetic field is retained for a higher pressure when the effect of the ion pumping is negligible.

  • PDF

동전기 휠을 이용한 전도성 환봉의 나선형 운동과 제어 (Screw Motion and Control of Conductive Rod by Rotating a Spiral Electrodynamic Wheel)

  • 정광석
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.882-887
    • /
    • 2011
  • A spiral electrodynamic wheel is proposed as an actuator for the contactless conveyance of a conductive rod. When rotating the wheel around the rod, a radial force, a tangential force, and an axial force are generated on the rod and cause a screw motion of the rod. The rotation of the rod is the inevitable result due to traction torque of the wheel and the unintended motion to be excluded. However, the rotating speed of the rod should be measured without mechanical contact to be cancelled out through the controller, so the electrodynamic wheel is used as a sensor measuring the rotating speed of the rod indirectly as well as an actuator. In this paper, we model the magnetic forces by the proposed wheel theoretically and compare the derived model with simulation result by Maxwell, and analyze influences on the magnetic forces by key parameters constituting the wheel. The feasibility of the conveyance system is verified experimentally.

진동 방지용 점성 유체 댐퍼의 동특성 해석에 관한 연구 (The Study of Dynamic Characteristic of a Viscous Fluid Damper in Vibration Isolation)

  • 권오병;이강민;김유민;고철수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1136-1140
    • /
    • 2001
  • Viscous fluid damper is used for vibration isolation of piping system, presses, turbo-generator and other heavy industrial equipments, as well as seismic isolation of buildings structure. So dynamic characteristic of viscous fluid damper is very important. This paper presents the result of the study of dynamic characteristic of viscous fluid damper. And the force-displacement relation of the viscous damper is described by experimentally calibrated fractional derivative Maxwell Model. The proposed model is validated by dynamic testing and A good agreement between predicted and experimental results is obtained.

  • PDF