• Title/Summary/Keyword: Maxwell equation

Search Result 170, Processing Time 0.032 seconds

Calculation of Eddy Current Distribution in Conducting Bulk with Voltage Source (전압원이 인가된 도체 내에서의 와전류 분포 해석)

  • Kim, Do-Wan;Jeong, Hyeon-Gyo;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • When current flows through a thick conductor such, most of the current flows along outside of the conductor, which is called skin effect. This paper represents a method calculating such a current distribution in the conductor region. The conductor region is divided into some pieces and each piece has its own unknown variable, i.e. current density. The governing equation which expresses Maxwell's equation is combined with the circuit equation with voltage source. The combined equation is solved to obtain current distribution in the conductor. This algorithm is applied to EMC(Electromagnetic Casting) to calculate current density with voltage source.

  • PDF

An improved Maxwell creep model for salt rock

  • Wang, Jun-Bao;Liu, Xin-Rong;Song, Zhan-Ping;Shao, Zhu-Shan
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • The creep property of salt rock significantly influences the long-term stability of the salt rock underground storage. Triaxial creep tests were performed to investigate the creep behavior of salt rock. The test results indicate that the creep of salt rock has a nonlinear characteristic, which is related to stress level and creep time. The higher the stress level, the longer the creep time, the more obvious the nonlinear characteristic will be. The elastic modulus of salt rock decreases with the prolonged creep time, which shows that the creep damage is produced for the gradual expansion of internal cracks, defects, etc., causing degradation of mechanical properties; meanwhile, the creep rate of salt rock also decreases with the prolonged creep time in the primary creep stage, which indicates that the mechanical properties of salt rock are hardened and strengthened. That is to say, damage and hardening exist simultaneously during the creep of salt rock. Both the damage effect and the hardening effect are considered, an improved Maxwell creep model is proposed by connecting an elastic body softened over time with a viscosity body hardened over time in series, and the creep equation of which is deduced. Creep test data of salt rock are used to evaluate the reasonability and applicability of the improved Maxwell model. The fitting curves are in excellent agreement with the creep test data, and compared with the classical Burgers model, the improved Maxwell model is able to precisely predict the long-term creep deformation of salt rock, illustrating our model can perfectly describe the creep property of salt rock.

Subcell Maxwell-Boltzmann FDTD Method for Analyzing Thin Plasma Layer (얇은 플라즈마 층의 전자기 해석을 위한 Subcell 맥스웰-볼츠만 유한 차분 시간 영역 기법)

  • Jung, Inkyun;Kim, Yuna;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.326-332
    • /
    • 2015
  • Analyzing electromagnetic properties in plasma medium, it is difficult to numerically solve electromagnetic problem with thin plasma. In this paper, subcell Maxwell-Boltzmann FDTD method was proposed which is combined with Maxwell-Boltzmann FDTD and subcell FDTD method for analyzing plasma and electrically thin materials, respectively. Calculations of reflection coefficient and absorption rate error were performed by using 1D FDTD method. Reflection coefficient computed by applying the proposed method is in agreement with analytic solution. Absorption rate error analyzed by employing the proposed method is 1/10 times less than one by using conventional method.

Characterization of linear microwave plasma according to conditions of TEM waveguide using fluid simulation

  • Seo, Gwon-Sang;Han, Mun-Gi;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.216-216
    • /
    • 2016
  • 마이크로웨이브를 이용한 플라즈마 소스의 경우 동작 압력 범위가 넓고 전자가열이 효율적이며, 낮은 이온에너지를 갖는 고밀도의 플라즈마를 발생시킬 수 있는 장점이 있어 최근 많은 연구가 되고 있다. 그 중에서 본 연구에 이용된 선형 안테나를 사용하는 마이크로웨이브 플라즈마 장치는 구성이 간단하고, 직 병렬 결합을 통해 고효율, 고밀도의 플라즈마 생성이 가능한 장점이 있다. 본 연구에서는 선형 안테나를 사용하는 마이크로웨이브 플라즈마 소스의 구조에 따른 특성 변화를 2차원 유체 시뮬레이션을 통하여 검증하였다. Maxwell's equation, Continuity equation, Electromagnetic wave equation 등을 이용해 동축관의 유전율과 Gap size에 따른 특성 변화를 관찰하였다. 동축 형태의 도파관을 따라 전달되는 Wave의 파장을 조절하도록 구조를 변화시켜 플라즈마 특성의 변화를 관찰하고 분석하였다.

  • PDF

Viscoelastic stress analysis of nonaxisymmetrically heated cylindrical tubes (비축대칭 열하중을 받는 원통튜브의 점탄성 응력해석)

  • 박진석;서금석;김종인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.396-403
    • /
    • 1991
  • A solution is presented for the computation of the elastic-creep stresses in a hollow cylinder subjected to nonaxisymmetric temperature distribution. The creep problem is treated by the Maxwell creep model. Laplace transformation is used for reformation of the governing equation of elastic problem and Hooke's law in a function of .gamma. , .theta. , and creep constant. The governing equation is set up using the Airy stress function which leads to the biharmonic equation. The solution is obtained by using Fourer series method and Laplace inverse method used to obtain the stress components which include the variation of time. This solution shows excellent agreement with Lamkin's and Boley & Weiner's solution. The viscoelastic stresses are also obtained for the fuel rob tube subjecting nonaxisymmetric thermal load.

Electro-mechanical field analysis of Brushless DC motor due to the driving methods (구동방식에 따른 브러시리스 직류 전동기의 기전 연성 특성 해석)

  • Chang J.H.;Jang G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.659-662
    • /
    • 2003
  • This paper analyzes the electro-mechanical characteristics of the spindle motor in a computer hard disk drive due to the trapezoidal and sinusoidal driving methods. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation for the analysis of the magnetic field. Mechanical motion of a rotor is calculated by solving Newton-Euler equation. Electro-mechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force.

  • PDF

The Analysis on the Characteristics of the Double-Sided 3 Phase Linear Induction Motor With Conducting Sheet Rotor (Conducting sheet rotor를 갖인 양측방식 3상 직선형 유도전동기의 특성해석)

  • Yun Jong Lee
    • 전기의세계
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 1970
  • In this paper, the equation for the generated force is introduced, on the basis of Maxwell's electromagnetic equation, by dividing the air-gap magnetic field into the region of the constant amplitude and the region of the pulsating field in the both ends of iron core, in the case that the typical 3 phase winding is employed in the double sided 3 phase linear induction motor with sheet rotor in accrodance with the winding method of rotary induction machine. With the effect of the overhang region being taken into account, the result, in which the equation is established, inducates that theoretical values nearly coincides with the measured values in the interval of slip s=0-0.8.

  • PDF

Vibration Reaponse Analysis of frames with energy absober installed in Beams (보 제진 프레임의 진동응답해석)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.159-166
    • /
    • 1997
  • The purpose of this thesis is to derive a theoretical model of the hysteretic resistance of the visco-elastic damper based on test results of harmonic excitation and to investigate of the basis of theory and experiment the effect of vibration control and response characteristics of portal frames degree vibration systems provided with the damper. The behaviour of a visco-elastic degree under dynamic loading is idealized by a model of the theory of visco-elasticity, i.e. a four-parameter model formed as a parallel combination of Maxwell fluid and Kelvin-Voigh models and its constitutive equation is derived. The model parameters are determined for a tested damper from the datas of harmonic excitation tests. The theoretical model of the damper is incorporated in equation fo motion of single degree of freedom. A computer program for solving the equation is written using Runge-kuttas's numerical integration scheme. Using this analysis program test cases of the earthquake excitation are simulated and the results of the simulation are the results of the simulation are the results of the simulation are compared with the test results.

  • PDF

Characteristics of Linear Microwave Plasma Using the Fluid Simulation and Langmuir Probe Diagnostics

  • Seo, Gwon-Sang;Han, Mun-Gi;Yun, Yong-Su;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.158.1-158.1
    • /
    • 2013
  • Microwave는 일반적으로 300 [MHz]~30 [GHz] 사이의 주파수를 가지는 전파로 1 [m] 이하의 파장을 가진다. Microwave를 이용한 플라즈마의 경우 낮은 이온 에너지, 효율적인 전자 가열, 넓은 동작압력 범위, 높은 밀도 등의 장점을 가지고 있어 PECVD(Plasma Enhanced Chemical Vapor Deposition)에 적합한 플라즈마 소스라고 할 수 있다. 또한 Microwave는 파장의 길이가 증착이 이루어지는 진공 챔버의 길이보다 매우 작기 때문에 대면적 적용성이 용이하므로 현재 많은 연구가 이루어지고 있다. 본 연구에서는 Fluid Simulation을 통해 Maxwell's equation, continuity equation, electromagnetic wave equation 등을 이용하여 Microwave의 파워 및 압력에 따른 플라즈마 parameter를 계산하고, 자체 제작한 Linear microwave plasma 장치에서 정전 탐침(Langmuir Probe)을 이용하여 플라즈마 Parameter를 측정하였다. 또한 Simulation 결과와 실험결과를 비교 분석하였다.

  • PDF

Analysis of cross-talk effects in volume holographic interconnections using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1998
  • Cross-talk effects in high-density volume holographic interconnections are investigated using perturbative iteration method of the integral form of Maxwell's wave equation. In this method, the paraxial approximation and negligence of backward scattering introduced in conventional coupled mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction orders corresponding to successive iterations. Some numerical examples are given for first and third order diffraction.