• Title/Summary/Keyword: Maxwell

Search Result 833, Processing Time 0.026 seconds

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

Nuclear energy consumption and CO2 emissions in India: Evidence from Fourier ARDL bounds test approach

  • Ozgur, Onder;Yilanci, Veli;Kongkuah, Maxwell
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1657-1663
    • /
    • 2022
  • This study uses data from 1970 to 2016 to analyze the effect of nuclear energy use on CO2 emissions and attempts to validate the EKC hypothesis using the Fourier Autoregressive Distributive Lag model in India for the first time. Because of India's rapidly rising population, the environment is being severely strained. However, with 22 operational nuclear reactors, India boasts tremendous nuclear energy potential to cut down on CO2 emissions. The EKC is validated in India as the significant coefficients of GDP and GDP.2 The short-run estimates also suggest that most environmental externalities are corrected within a year. Given the findings, some policy recommendations abound. The negative statistically significant coefficient of nuclear energy consumption is an indication that nuclear power expansion is essential to achieving clean and sustainable growth as a policy goal. Also, policymakers should enact new environmental laws that support the expansion and responsible use of nuclear energy as it is cleaner than fossil fuels and reduces the cost and over-dependence on oil, which ultimately leads to higher economic growth in the long run. Future research should consider studying the nonlinearities in the nuclear energy-CO2 emissions nexus as the current study is examined in the linear sense.

Environment-dependent Broadband Perfect Absorption of Metal-insulator-metal Metamaterial Systems

  • Feng Li;Yulong Tang;Qingsong Peng;Guosheng Hu
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.136-146
    • /
    • 2023
  • Based on calculations using the macroscopic Maxwell's equations with mesoscopic boundary conditions, light absorption by a layered metal-insulator-metal (MIM) metamaterial system embedded in three different environments is investigated. Increasing the top metal thickness shifts the broad absorption band to lower dielectric-constant regions and longer wavelengths, for either TM or TE waves. Boosting the dielectric-layer thickness redshifts the broadband absorption to regions of larger dielectric constant. In air, for the dielectric-constant range of 0.86-3.40, the absorption of the system exceeds 98% across 680-1,033 nm. In seawater with optimized dielectric constant, ≥94% light absorption over 400-1,200 nm can be achieved; particularly in the wavelength range of 480-960 nm and dielectric-constant range of 0.82-3.50, the absorption is greater than 98%. In an environment with even higher refractive index (1.74), ≥98% light absorption over 400-1,200 nm can be achieved, giving better performance. The influence of angle of incidence on light absorption of the MIM system is also analyzed, and the angle tolerance for ≥90% broadband absorption of a TM wave is up to 40° in an environment with large refractive index. While the incident-angle dependence of the absorption of a TE wave is nearly the same for different circumstances, the situation is different for a TM wave.

Electron Firehose Instabilities in High-β Intracluster Medium

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2019
  • The firehose instability is driven by a pressure anisotropy in a magnetized plasma when the temperature along the magnetic field is higher than the perpendicular temperature. Such condition occurs commonly in astrophysical and space environments, for instance, when there are beams aligned with the background magnetic field. Recently, it was argued that, in weak quasi-perpendicular shocks in the high-β intracluster medium (ICM), shock-reflected electrons propagating upstream cause the temperature anisotropy. This electron temperature anisotropy can trigger the electron firehose instability (EFI), which excites oblique waves in the shock foot. Scattering of electrons by these waves enables multiple cycles of shock drift acceleration (SDA) in the preshock region, leading to the electron injection to diffusive shock acceleration (DSA). In the study, the kinetic properties of the EFI are examined by the linear stability analysis based on the kinetic Vlasov-Maxwell theory and then further investigated by 2D Particle-in-Cell (PIC) simulations, especially focusing on those in high-β (β~100) plasmas. We then discuss the basic properties of the firehose instability, and the implication of our work on electron acceleration in ICM shock.

  • PDF

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

Development of automatic system for evaluating the stress redistribution in structural members of a steel cable-stayed bridge due to cable stress relaxation

  • Hong, Tien-Thang;Kim, Jung J.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.753-768
    • /
    • 2022
  • In this study, a graphical automatic system is developed in order to investigate the stress redistribution of structural members in a steel cable-stayed bridge. The generalized Maxwell model is selected for stress relaxation estimation, and it is carefully verified and applied to all the cable members of a steel cable-stayed bridge to investigate its stress relaxation. A set of stress relaxation parameters in all cables is determined using the fmincon optimization function. The stress redistribution of the steel cable-stayed bridge is then analyzed using ABAQUS. To shorten the investigation time, all the aforementioned phases are built up to be an automatic system. The automatic system is then employed to investigate the effect of cable cross-section areas and girder spans on stress redistribution. The findings from these studies show that the initial tension in the cables of a steel cable-stayed bridge should be kept to less than 55% of the cable's ultimate strength to reduce the effect of cable stress relaxation. The cable space in a steel cable-stayed bridge should be limited to 15,000 mm to minimize the effect of cable stress relaxation. In comparison to other structural members of a steel cable-stayed bridge, the girders experience a significant stress redistribution.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Electromagnetic Characteristics of Dielectric Barrier Discharge Plasma Based on Fluid Dynamical Modeling (유체역학에 바탕한 플라즈마 모델링을 통한 유전체 장벽 방전 플라즈마의 전파 특성 해석)

  • Kim, Yu-Na;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.331-336
    • /
    • 2013
  • In this paper, plasma modeling is achieved using fluid dynamics, thereby electron density is derived. The way proposes the key to overcoming the limitations of conventional researches which adopt simplified plasma model. The result is coupled with Maxwell-Boltzmann system in order to calculate scattering waves in various incident angle. The first part is dedicated to perform plasma modeling in dielectric barrier discharge(DBD) structure. Suzen-Huang model is adopted among various models due to the fact that it uses time independent variables to calculated potential and electron distribution in static system. The second part deals with finite difference time domain(FDTD) scheme which computes the scattered waves when the modulated Gaussian pulse is incident. Founded on it, radar cross section(RCS) is observed. Consequently, RCS is decreased by 1~2 dB with DBD plasma. The result is analogous to the RCS measurement in other researches.