• 제목/요약/키워드: Maxwell's equation

검색결과 99건 처리시간 0.022초

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계 (Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity)

  • 이수정;이주희;이동연;서태원;김진호
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

초소성변형의 분자론 (Molecular Theory of Superplastic Deformation)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제23권4호
    • /
    • pp.217-236
    • /
    • 1979
  • 소성변형에 대한 著者들의 이론을 초소성합금(Zn-Al eutectoid, A1-Cu, Pb-Sn, Sn-Bi, Mg-Al eutectics)에 적용하였다. 그 결과 초소성합금의 소성변형은 두 개의 grain boundary流動單位의 平行連結로 나타낼 수 있었다. 이 두 개의 流動單位는 流動式에 나타나는 parameter $X_{gj}/{\alpha}_{gj}$${\beta}_{gj}$(j=1 혹온 2)로 表現할 수 있으며 이들을 實驗的으로 求할 수 있었다. 著者들의 流動式은 實驗과 잘 一致하였다. Strain rate sensitivity 對 -In(strain rate) 곡선을 이론으로 구한 결과 유동단위수만큼의 peak가 ${\beta}_{gj}$(j=1 or 2) 값에 따라 분리되어 나타났고 초소성의 조건도 ${beta}_{gj}$값에 의하여 결정됨을 알았다. ${\beta}_{gj}값의 粒子크기 依存性을 구하였고 온도변화에 따른 ${\beta}_{gj}$값 변화로부터 각 流動單位의 활성화엔탈피, ${\Delta}H_{gj}^{\neq}$도 구하였다. 그 결과 ${\Delta}H_{gj}^{\neq}$는 재료성분원소들의 grain boundary 자체확산에 의한 활성화엔탈피와 같이 나타났고 또 이들은 粒子 크기 증가에 마라 증가함을 보였다

  • PDF

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Development of an Algorithm for Predicting the Thermal Distribution by using CT Image and the Specific Absorption Rate

  • Hwang, Jinho;Kim, Aeran;Kim, Jina;Seol, Yunji;Oh, Taegeon;Shin, Jin-sol;Jang, Hong Seok;Kim, Yeon Sil;Choi, Byung Ock;Kang, Young-nam
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1584-1588
    • /
    • 2018
  • During hyperthermia therapy, cancer cells are heated to a temperature in the range of $40{\sim}45^{\circ}C$ for a defined time period to damage these cells while keeping healthy tissues at safe temperatures. Prior to hyperthermia therapy, the amount of heat energy transferred to the cancer cells must be predicted. Among various non-invasive methods, the thermal prediction method using the specific absorption rate (SAR) is the most widely used method. The existing methods predict the thermal distribution by using a single constant for the mass density in one organ through assignment. However, because the SAR and the bio heat equation (BHE) vary with the mass density, the mass density of each organ must be accurately considered. In this study, the mass density distribution was calculated using the relationship between the Hounsfield unit and the mass density of tissues in preceding research. The SAR distribution was found using a quasi-static approximation to Maxwell's equation and was used to calculate the potential distribution and the energy distributions for capacitive RF heating. The thermal distribution during exposure to RF waves was determined by solving the BHE with consideration given to the considering contributions of heat conduction and external heating. Compared with reference data for the mass density, our results was within 1%. When the reconstructed temperature distribution was compared to the measured temperature distribution, the difference was within 3%. In this study, the density distribution and the thermal distribution were reconstructed for the agar phantom. Based on these data, we developed an algorithm that could be applied to patients.

수분함량과 측정주파수에 따른 사질토 지반의 유전상수 변화 (Variation of Dielectric Constant of Sand due to Water Content and Measuring Frequency)

  • 이주형;오명학;박준범;김형석
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.129-139
    • /
    • 2002
  • 최근 지반 특성과 지반 오염도의 조사를 위해 유전상수 측정기법을 적용하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 다양한 함수비와 건조단위중량을 갖는 화강풍화토와 주문진표준사의 유전상수를 75kHz~12MHz의 주파수 범위에서 측정하였다. 사질토의 유전상수는 주파수가 증가함에 따라 감소하는 분산거동을 보였다. 또한 함수 비나 건조단위중량이 증가함에 따라 배향분극에 기여하는 물분자의 양이 증가하고 유전상수가 1인 공기의 양이 감소하여 유전상수가 증가하였다. 흙의 유전특성은 함수비와 건조단위중량을 모두 고려한 수분밀도에 선형적으로 비례하는 경향을 나타내었다. Maxwell식, Topp식, CRIM식에 의한 계산값과 측정된 값을 비교한 결과 기존의 식은 유전상수의 분산거동을 고려하지 못하고 있기 때문에 저주파에서는 측정값과 차이를 나타내었다.

인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구 (An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes)

  • 이재원;양승화
    • Composites Research
    • /
    • 제37권2호
    • /
    • pp.132-138
    • /
    • 2024
  • 본 연구에서는 분자동역학 전산모사를 통해 육방정계 단일벽 질화붕소 나노튜브(BNNT)의 반경 변화에 따른 압전탄성 변화를 규명하였다. 질화붕소의 거동을 비교적 잘 모사하는 Tersoff 포텐셜과 기계적 하중인가에 따른 질소 및 붕소원자의 상대변위로 인한 분극의 정량화를 위해 강체 이온 근사를 채택하였다. 선형 압전탄성 구성방정식을 기반으로 각각의 질화붕소에 변형률을 인가하고 이에 따른 전기적 변위와 응력을 산출하여 압전상수와 영률을 각각 예측하였다. 그 결과, BNNT의 압전상수는 반경이 증가함에 따라 점진적으로 감소하는 양상을 보였다. 반면 탄성계수의 경우 불연속적 구조를 가지는 질화붕소를 등가의 연속체 구조로 등가시키는 방법에 따라 증가 또는 감소하는 경향을 보였다. BNNT의 곡률변화에 따른 물성변화를 가상실험에 기반한 경험적 모델로 근사하기 위해 BNNT의 튜브반경-압전탄성물성 간 상관관계식을 제안하였다. 또한 BNNT의 반경변화에 따른 물성을 곡률의 관점에서 설명하기 위해, BNNT와 질화붕소 나노시트(BNNS)의 결합에너지와 탄성변형에 따른 원자간 결합길이 변화가 각각의 구조의 변형에너지 증가에 기여하는 정도를 상호 비교하였다.