• Title/Summary/Keyword: Maxwell's Equations

Search Result 110, Processing Time 0.021 seconds

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Mathematical Modelling of a Double-sided Linear Induction Motor and Derivation of Equvalent Circuit (양측식 선형 유도 전동기의 수학적 모델링과 등가 회로 유도)

  • Hong, E.P.;Eyou, H.G.;Yoo, J.Y.;Park, G.T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.337-339
    • /
    • 1995
  • A Linear Induction Machine(LIM) is the motor which is developed from an rotary induction machine. Usually, the electromagnetic field of an LIM is analyzed by Maxwell's equations. The structure of an LIM is different from a conventional rotary machine, an LIM has some particular characteristics such as the end effects. Hence, the mathematical analysis of an LIM is very complicated and the implementation of the equivalent model is difficult. In this paper, the dynamic equations and the equivalent model of a Double-sided short primary LIM(DLIM) is obtained by the winding function and a d-q theory. The validity of the proposed methodology is verified by numerical analysis.

  • PDF

A Fast Analytic Model of Axial Flux Permanent Magnet Machines with Static/Dynamic Axis Eccentricity

  • Guo, Baocheng;Huang, Yunkai
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.554-560
    • /
    • 2016
  • This paper presents a general analytical model to calculate the characteristics of axial-flux permanent-magnet machines with axis eccentricities. The radial and tangential magnetic flux densities in the air gap under normal conditions were first obtained using a combination of Maxwell's equations and Schwarz-Christoffel (SC) transformation. Next, equations for the radii were deduced to investigate the static/dynamic eccentricities. The back electromotive forces (EMFs) were calculated and compared with those obtained from finite element (FE) analysis. The analytical predictions show good agreement with the FE results. Detection approaches were obtained by comparing with normal conditions, and the analytical model was verified experimentally.

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

Experimental and Characteristic Analysis of Tubular Type Linear Oscillating Actuator with Halabch Magnetized PMs Mover (Halbach배열 영구자석 가동자로 구성된 Tubular형 직선 왕복 액추에이터의 특성해석 및 실험)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.756-758
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. This paper deals with the characteristics of tubular type linear oscillating actuator with Halbach magnet array. The magnetic field solutions are derived analytically in terms of vector potential, two dimensional cylindrical coordinate system and Maxwell's equations. Motor thrust, flux linkage, back emf are then derived. The results are shown in good conformity with those obtained from the commonly used finite element method. Test results such as thrust measurements are also given to confirm the analysis.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Molecular Theory of Plastic Deformation (I). Theory (소성변형의 분자론 (제1보). 이론)

  • Kim Chang Hong;Ree Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.330-338
    • /
    • 1977
  • In order to elucidate the plastic deformation of solids, the following assumptions were made: (1) the plastic deformation of solids is classified into two main types, the one which is caused by dislocation movement and the other caused by grain boundary movement, each movement being restricted on a different shear surface, (2) the dislocation movement is expressed by a mechanical model of a parallel connection of various kinds of Maxwell dislocation flow units whereas the grain boundary movement is also expressed by a parallel connection of various kinds of Maxwell grain boundary flow units; the parallel connection in each type of movements indicates that all the flow units on each shear surface flow with the same shear rate, (3) the latter model for grain boundary movement is connected in series to the former for dislocation movement, this means physically that the applied stress distributes homogeneously in the flow system while the total strain rate distributes heterogeneously on the two types of shear planes (dislocation or grain boundary shear plane), (4) the movement of dislocation flow units and grain boundary units becomes possible when the atoms or molecules near the obstacles, which hinder the movement of flow units, diffuse away from the obstacles.Using the above assumptions in conjunction with the theory of rate processes, generalized equations of shear stress and shear rate for plastic deformation were derived. In this paper, four cases important in practice were considered.ted N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.

  • PDF

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

Physical Properties of Microencapsulated Phase Change Material Slurries (미립잠열슬러리의 물성에 관한 실험적 연구)

  • 이효진;홍재창;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.860-869
    • /
    • 2000
  • The thermal conductivity and density of slurries entrained with the particles of Micro-PCM are measured with respect to its temperatures as well as concentrations. For the thermal conductivity of slurries, a device made from P.A. Hilton (Model No. H470) is adopted. There is a well-scaled 0.3 mm gap between shells into which the slurry is injected. The temperatures of the slurry are changed to $5~25^{\circ}C$ , for which it is controled by the supplied voltage and cooling water circulated around the outer shell. The concentrations of Micro-PCM slurries are varied from 5 wt% to 50 wt%. Some general equations such as Maxwell's equation, are evaluated for their applicability with Micro-PCM slurry. As a result, it happens to be some 20% discrepancy between the experiment and the applied equations. The density measurements of Micro-PCM slurry to its temperature and concentration are peformed by hydrometer. For the experiment, tetradecane encapsulated slurry (($t_m≒6^{\circ}C$) and a mixed wax ($t_m≒50^{\circ}C$) are tested. The temperature changes of tetradecane are applied for $0^{\circ}C\;to\;$20^{\circ}C$and a mixed wax for $20^{\circ}C\;to\;$60^{\circ}C$ and its concentrations are changed from 5 wt% to 30 wt%. The results are compared with a general equation and the referenced data. For the conclusion, the experimental result and a general equation are well agreed.

  • PDF