• 제목/요약/키워드: Maximum von mises stress

검색결과 209건 처리시간 0.025초

유한요소법을 이용한 치과용 고정체와 치조골에서의 응력분포에 대한 생체 역학적 분석 (A Biomechanical Analysis or the Stress Distribution of Dental Implant and Alveolar Bone Utilizing Finite Element Method)

  • 정지광;신정욱;이성재;김영곤;김정성;박정홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.511-514
    • /
    • 1997
  • The objective of this study is to propose a finite element based design of the dental implant replacing unction and shape of natural teeth. For this, geometric actors were varied to investigate stress distribution of the alveolar bone around dental implant. In this study, the results were obtained based on the theory of linear elastic, with geometrically axisymmetric assumption. Geometric actors determining implant shape are ranged as 0.2mm-0.6mm, 0.04mm-0.1mm, 0.46mm-0.84mm or height of thread, radius of curvature of thread, and pitch, respectively. The stresses in the alveolar bone caused by biting force playa major role in determining implant stability. Especially, the stress concentration in the cortical bone causes bone resorption and finally makes the implant unstable. Therefore, the stress distributions were investigated on the side of the alveolar bone focusing on the area of cortical bone. The maximum von Mises stress was found to increase up to 6% as the height of thread increases, while its value was to decrease to 19% when the radius of curvature increase within the assigned ranges. For the variation of pitch, the larger size of pitch results in greater maximum von Mises stress when the length of the implant under consideration is fixed. The existence of the neck below the shoulder did not affect the stress distribution in the region of alveolar bone. However, the stresses on the side of the implant near the neck were found to be different by 20% approximately. Therefore, the neck can provide the stability of the implant against continuing biting movement. As a conclusion, the finite element based study shows a potential in designing the dental implant systematically.

  • PDF

기계적 프레스 접합의 공정 및 강도 평가 (Process and Strength Evaluation of Mechanical Press Joining)

  • 이상훈;김호경
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.1-6
    • /
    • 2011
  • New methods for joining sheet of metal are being sought. One of the most promising methods is MPJ (mechanical press joining). It has been used in thin metal work because of its simple process and relative advantages over other methods, as it requires no fasteners such as bolts or rivets, consumes less energy than welding, and produces less ecological problems than adhesive methods. In this study, the joining process and static behavior of single overlap joints has been investigated. During fixed die type joining process for SPCC plates, the optimal applied punching force was found. The maximum tensile-shear strength of the specimen produced at the optimal punching force was 1.75 kN. The FEM analysis result on the tensile-shear specimen showed the maximum von-Mises stress of 373 MPa under the applied load of 1.7 kN, which is very close to the maximum tensile strength of the SPCC sheet(= 382 MPa). This suggests that the FEM analysis is capable of predicting the maximum tensile load of the joint.

골유착성 임플란트를 중간 지대치로 사용한 고정성 보철물의 응력분석 (A TWO DIMENSIONAL STRESS ANALYSIS OF FIXED PROSTHESIS WITH OSSEOINTEGRATED IMPLANT AS AN INTERMEDIATE ABUTMENT)

  • 박상수;방몽숙
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.611-624
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution of the natural teeth, the implant, the prosthesis and the supporting tissue according to the types of implant and connection modality in the five-unit fixed partial denture with a implant pier abutment. A Two dimensional stress analysis model was constructed to represent a mandible missing the first and second premolars and first molar. The model contained a canine and second molar as abutment teeth and implant pier abutments with and without stress-absorbing element. Finite element models were created and analyzed using software ANSYS 4.4A for IBM 32bit personal computer. The results obtained were as follows. 1. Implant group, compared to the natural teeth group, showed a maximum principal stress at the superior portion of implants and a stress concentration at :he neck and end portion. 2. Maximum principal stress and maximum Von Mises stress were always lower in the case of rigid connection than nonrigid connection. 3. A cylinder type implant with stress absorbing element and screw type implant were generally similar in the stress distribution pattern. 4. A screw type implant, compared to the cylinder type implant, showed a relatively higher stress concentration at both neck and end portion of it. 5. Load B cases showed higher stress concentration on the posterior abutments in the case of nonrigid connector than rigid connector. 6. A maximum displacement was always lower in the case of rigid connection than nonrigid connection. These results suggest that osseointegrated implant can be used as an intermediate abutment.

  • PDF

Stress Analysis of Femoral Stems on Non-Cemented Total Hip Replacement - A Three-Dimensional Finite Element Analysis -

  • Kim, Sung-Kon;Chae, Soo-Won;Jeong, Jung-Hwan
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.263-266
    • /
    • 1997
  • Three dimensional numerical model based on the finite element method(FEM) were developed to predict the mechanical behavior of hip implants. The purpose of this study is to investigate the stress distribution of two types of cementless total hip replacement femoral component -a straight stem and a curved stem, and to compare their effect on the stress shielding between two types by three dimensional finite element method. The authors analyzed von Mises stress in the cortex & stem and compared the stress between the straight and the curved stem. In comparison of stresses between two different design of femoral stem, there was 25% more decrease of stress in straight stem than curved stem in the medial cortex at proximal region. The straight stem had consistently much lower stresses than the curved stem throughout the whole medial cortex with maximum 70% reduction of stress. However, there was little change in stress between nature and 2 implanted femur throughout the lateral cortex. Stress of femoral stem was much higher in the straight stem than the curved stem up to 60%. The straight stem had more chance of stress shielding and a risk of fatigue fracture of the stem compared with the curved stem in noncement hip arthroplasty. In design of femoral stem still we have to consider to develop design to distribute more even stress on the proximal medial cortex.

  • PDF

Finite Elements Adding and Removing Method for Two-Dimensional Shape Optimal Design

  • Lim, Kyoung-Ho;John W. Bull;Kim, Hyun-Kang
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.413-421
    • /
    • 2001
  • A simple procedure to add and remove material simultaneously along the boundary is developed to optimize the shape of a two dimensional elastic problems and to minimize the maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are close to the theoretical results of an elliptical boundary and the stress concentration is reduced by half for the fillet problem. The proposed shape optimization method, when compared with existing derivative based shape optimization methods has many features such as simplicity, applicability, flexibility, computational efficiency and a much better control on stresses on the design boundary.

  • PDF

선박용 갑판크레인의 지브의 경량화설계 (Weight Reduction Design for a JIB of Deck Crane for Shipment)

  • 한동섭;이문재;한근조
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

초경량 인라인 스케이트 프레임의 피로 내구성 평가 (Evaluation of Fatigue Endurance for an Ultra-light-weight Inline Skate Frame)

  • 이세용;김호경
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.1-5
    • /
    • 2011
  • In order to evaluate fatigue endurance for an ultra-light weight inline skate frame, FEM analysis was performed. Tensile properties and a S-N curve were determined through tensile and fatigue tests on a modified Al-7075+$S_c$ alloy. The yield and ultimate tensile strengths were 553.3 MPa and 705.5 MPa, respectively. The fatigue endurance limit of this alloy was 201.2 MPa. For evaluating the fatigue endurance of the inline skate frame, the S-N data were compared with the stress analysis results through FEM analysis of the frame. The maximum Von-Mises stress of the frame was determined 106 MPa through FEM analysis of the frame, assuming that the rider weight is 75 Kg. Conclusively, on the basis of fatigue limit, the inline skate frame has a safety factor of approximately 2.0.

TiN 박막의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of TiN Thin Film)

  • 김정실;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.331-340
    • /
    • 2001
  • Elastic-Plasitc Finite element analysis is peformed about the TiN coated medium. The normal contact is simulated by a rigid asperity pressing the surface of an elastic-plastic half-surface. The case of a surface film stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for several coating thickness. Additionally, the critical normal loads for deformation in the substrate and coating fracture are calculated when the yield of TiN film follows the Maximum Principal Stress Theory and Von Mises Theory. The results can be subsumed in failure maps for TiN thin film on steel.

  • PDF

캘리퍼 실린더의 피로에 대한 내구성 해석 (Durability Analysis on Fatigue of Caliper Cylinder)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.208-213
    • /
    • 2015
  • In this study, two models due to the configuration of caliper cylinder among the parts of automotive brake system are studied by structural and fatigue analysis. As the maximum equivalent stress at model 2 becomes 1.5 times lower than model 1, model 2 can endure load higher than model 1. In case of fatigue damage analysis on model 1 and 2, model 1 has the damage area more than model 2. Fatigue damage at model 1 happen more than model 2. These study results can be effectively utilized with the design on caliper cylinder by anticipating prevention against its damage and investigating durability.

위치 제어가 가능한 서보프레스의 정적 구조해석 (Static Structural Analysis of Variable Position Control Servo Press)

  • 이해수;박태현
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.881-888
    • /
    • 2022
  • Servo presses are used in variety of ways in industry throughout the production and assembly lines of machine parts. The bottom of the servo press is fixed to a bed or a tabletop, and the press cylinder continuously operates under vertical upward loads. In this research, a static structural analysis was performed by simplifying 3D model of the servo press, and the maximum deformation was applied to the clamp and bolt. The maximum value of Von Mises stress was reported in this paper. The result was used to calculate the safety factor, and it was confirmed that the design was conservative.