• Title/Summary/Keyword: Maximum tensile strength

Search Result 782, Processing Time 0.029 seconds

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

Effects of Processing Geometry on the Mechanical Properties and Silica Dispersion of Silica-Filled Isobutylene-Isoprene Rubber (IIR) Compounds (롤밀과 밀폐식 혼합기가 실리카 분산 및 부틸고무 복합소재의 물성에 미치는 영향)

  • Kim, S.M.;Cho, H.W.;Kim, J.W.;Kim, K.J.
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2010
  • We investigated the effects of processing geometry of silica-filled isobutylene-isoprene rubber (IIR) compounds on its mechanical properties and silica dispersion, using a two roll mill and an internal mixer (banbury mixer). The compound processed with the two roll mill showed the longer induction time ($t_2$), higher maximum torque ($T_{max}$), and better silica dispersion than the compound processed with the internal mixer; however, showed slightly the lower cure index ($t_{90}$). The mechanical properties (hardness, 300% modulus, tensile strength, elongation) of the compound processed with two roll mill were higher than compound done with the internal mixer.

Influence of Inadequate Rebar Lap Position on Crack of Underground Box Slab (철근 겹침이음 위치 부적정이 지하박스 슬래브 균열 발생에 미치는 영향)

  • Choi, Jung-Youl;Jang, In-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.685-692
    • /
    • 2020
  • In this study, the experimental and analytical study were performed on the location of longitudinal cracks in the middle of underground box structures. The location where the longitudinal cracking occurred was investigated that the overlapping joint of the rebar and the section of maximum tensile stress generated. Using the finite element analysis, the strength reduction ratio of the rebar was estimated by lack of overlap joint length. As the result of adequacy investigation for the length of the overlap joint presented in the design criteria, it was analytically proved that the lack of the overlap joint length could be cause the decreasing cross-sectional force and concrete cracking. As the result of this study, the adequacy of the overlapping criterion in the current design criteria was confirmed based on the finite element analysis and actual field case. In the case of overlapping joints installed in inappropriate position, it was considered that a long term crack control would be need to ensure the sufficient safety factor for the designed cross-sectional force.

Quality Characteristics of Dolsan Leaf Mustard according to Various Blanching Conditions and Liquid Chromatography with Photodiode Array and Tandem Mass Spectrometry Analysis (다양한 데침조건에서 돌산갓의 이화학적 특성 및 LC-PDA/MS/MS 분석)

  • Son, Hae-Reon;Oh, Sun-Kyung;Tsukamoto, Chigen;Choi, Myeong-Rak
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • This study aims to examine the optimum blanching conditions as a pretreatment condition to improve the storage stability of Dolsan leaf mustard pickle. The effects of the blan- ching temperature and time were investigated at a temperature range of $80-100^{\circ}C$. Sampling was done for 1 month after a 5 days interval. The L value of the Dolsan leaf mustard was found to be the highest at $80^{\circ}C$. The cutting force increased as the blanching temperature increased. The tensile strength decreased at $95^{\circ}C$ and $100^{\circ}C$. In addition, the sensory evaluation scores were the best at $80^{\circ}C$. The storage stability was assessed at various blanching temperatures to increase the sinigrin content during storage. Liquid chromatography with photodiode array and tandem mass spectrometry (LC-PDA/MS/MS) analysis was conducted to identify and quantify the sinigrin content in the Dolsan leaf mustard. Sinigrin as an internal standard was co-injected into each sample solution. The sample was monitored by recording the ultraviolet absorbance at 228 nm and by electrospray ionization (ESI) positive ion mode in the m/z 50-1,500 range. Blanching the sample at $80^{\circ}C$ showed the highest sinigrin concentration during storage among various temperatures and the maximum concentration was 350 ppm at 15 days storage. Study on utilization of vegetable from food processing of leaf mustard and preservation conservation results suggest that blanching at $80^{\circ}C$ is expected to improve the palatability of the pickle.

Antimicrobial Edible Film Developed from Defatted Corn Germ Meal Fermented by Bacillus subtilis

  • Kim Hyung-Wook;Roh I-Woo;Kim Kyung-Mi;Jang In-Suk;Ha Sang-Do;Song Kyung-Bin;Park Sang-Kyu;Lee Won-Young;Youn Kwang-Sup;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.597-604
    • /
    • 2006
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film containing 1.8% of BLS was developed from the defatted corn germ meal, which had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. Water vapor permeability of the fermented film $(88.3mg/cm^2\;h)$ was higher than those of the normal corn germ films $(75.8mg/cm^2\;h)$. Protein solubility of the fermented film was also higher than ordinary corn germ film at the pH range of 3-10. The fermented corn germ film had higher tensile strength and lower % elongation (elongation rate) than the ordinary corn germ film. The antimicrobial activity of the film was more than 50% of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the corn germ protein film with bacteriocin-like substance was applied on the mashed sausage media containing E. coli, the bacterial growth inhibition was higher than the ordinary corn protein film.

Mechanical Behavior and Characteristics of Internal Temperature and Relative Humidity of Concrete at Early Age (초기재령 콘크리트의 역학적 특성 및 온·습도 거동 특성 분석)

  • Park, Cheol Woo;Lee, Bong Hak;Hong, Seung Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.184-194
    • /
    • 2011
  • This study is to analyze the internal temperature and relative humidity of concrete at early age, as well as the mechanical behavior. Three different levels of cement unit content were cosidered as an experimental variable. In order to measure internal temperature and relative humidity immediately after concrete placement, this study developed a unique measuring device, which provided reliable results. Different cement content did not significantly affected the strengths including compressive, tensile and flexural strength and after 7 days of curing, strengths did not increase noticeably. Internal temperature reached the maximum about 11 hours later the placement and decreased after removal of forms. The internal temperature varied depending on the location and the exposure condition. In addition, the internal relative humidity was more affected by the exposure condition rather than the cement content.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

  • Lu, Shulin;Yang, Xiong;Hao, Liangyan;Wu, Shusen;Fang, Xiaogang;Wang, Jing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1315-1326
    • /
    • 2018
  • In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

Designing an innovative support system in loess tunnel

  • Wang, Zhichao;Xie, Yuan;Lai, Jinxing;Xie, Yongli;Su, Xulin;Shi, Yufeng;Guo, Chunxia
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.