• 제목/요약/키워드: Maximum stiffness

검색결과 763건 처리시간 0.024초

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권2호
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

A Study on the Paper Clothing -on the basis of handmade paper- (종이 의상에 관한 연구 - 수제지를 중심으로 -)

  • 이주실;김정혜
    • Journal of the Korean Society of Costume
    • /
    • 제44권
    • /
    • pp.181-199
    • /
    • 1999
  • The industry of modern clothing has deviated from the overflow of commercialism and the standardization and nowadays is going toward pursuing art, creativity, and high added value. This trend brings the return of the natural materials from the synthetic textiles and increases the value of old and handmade fabrics. Finally, the handmade-paper, which is a natural material, comes to be reconsidered as a new material for the clothing. Therefore, as the natural materials and the manufacture of handmade clothing are rising again, the qualitative improvement and globalization of clothing industry should be first realized through the developments of creative and various clothing materials and new expressing techniques. The above investigation and study have been synthesized and analyzed as follows: First, through the study on the origin of the paper clothing, its historical background and the process of its development, we've learned these two facts following : the paper clothing of the East in the past mostly had practiced meanings. On the other hand, in the West it had meanings which were raised the artist's emotions and beauty-consciousness to the artistic level by the various kinds of expressing methods. Second, handmade-paper was manufactured by the embedding method, which mixed mulberry pulp, gauze, corn, hair, sisal, silk and so on. It was found that handmade-paper had the affluent and proper texture as the clothing material and was be able to control the clarity through the variation of thickness. It was also confirmed that the creative and original texture with hand-worked molding beauty was obtained by the use of handmade-paper. Third, when the handmade-paper is used, the molding beauty of plane, relievo, and solid can be freely pursued, and various and effective molding conformation can be constructed by the effect of superposition and repetition. Also, because the maximum discretion from the various optional manufacturing methods is allowed, the molding beauty can be maximized when the clothes are manufactured with handmade-paper. Fourth, the gauze with strong drape was combined to overcome the stiffness and the tearing of the paper. As a result, the durability and the wearability of the paper were strengthened and thus the thus the applications as the clothing material were enlarged. In conclusion, in order to enhance the value, creativity, practicality, and artistic sense of the design for modern clothing, the clothes made of handmade-paper should be more studied. Moreover, for the generalization of paper clothes, the studies on the development of practical paper with paper with water resistance, post-treatment after dyeing, flexibility, and durability should be done. I really hope that this study will be the motive to provoke the possibility of handmade-paper as new clothing material in not only practical sense but also artistic sense.

  • PDF

A Study on the Development of Plastic Floater for Solar Power Plant on a Body of Water (수상 태양광 발전을 위한 플라스틱 부유체 개발에 관한 연구)

  • Jeong, Kwang-Soo;Jung, In Jun;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권10호
    • /
    • pp.283-290
    • /
    • 2020
  • In this study, a floater was developed for a frame-type solar power plant. The floater supports the frame and the solar panels. A finite element analysis was performed to design its shape and thickness, and the floater was manufactured by a rotational molding method using linear low-density polyethylene. It was found that the floater did not cause collapse and it maintained its stiffness even at 4 times the maximum load of 322.7 kgf. To perform a long-term compression test, a weight-type load application device that uses gravity was designed and manufactured. The amount of compressive deformation was measured for 7 days, and a long-term deformation equation was obtained. Even under small loads, continuous deformation was observed. However, the 10-year deformation amount for a constant load of 100 kgf was predicted to be small at about 4.64 mm. As a result, it was found that the developed floater could be used in a solar power plant on a body of water.

Dispersion Characteristics of Wave Forces on Interlocking Caisson Breakwaters by Cross Cables (크로스 케이블로 결속된 인터로킹 케이슨 방파제의 파력분산특성)

  • Seo, Ji Hye;Yi, Jin Hak;Park, Woo Sun;Won, Deck Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제27권5호
    • /
    • pp.315-323
    • /
    • 2015
  • Damage level of coastal structures has been scaled up according to increase of wave height and duration of the storm due to the abnormal global climate change. So, the design criteria for new breakwaters is being intensified and structural strengthening is also conducted for the existing breakwaters. Recently, interlocking concept has been much attention to enhance the structural stability of the conventional caisson structure designed individually to resist waves. The interlocking caisson breakwater may be survival even if unusual high wave occurs because the maximum wave force may be reduced by phase lags among the wave forces acting on each caisson. In this study, the dispersion characteristics of wave forces using interlocking system that connect the upper part of caisson with cable in the normal direction of breakwater was investigated. A simplified linear model was developed for computational efficiency, in which the foundation and connection cables were modelled as linear springs, and caisson structures were assumed to be rigid. From numerical experiments, it can be found that the higher wave forces are transmitted through the cable as the angle of incident wave is larger, and the larger the stiffness of the interlocking cable makes larger wave dispersion effect.

Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass (유방종괴에 대한 BI-RADS범주를 이용한 횡탄성 초음파와 병리결과 비교분석)

  • An, Hyun;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • 제12권2호
    • /
    • pp.217-223
    • /
    • 2018
  • This study to search the diagnostic performance of shear wave elastography(SWE) in breast mass and to compare the biopsy result and stiffness obtained from shear wave elastography. Diagnostic breast ultrasonography and SWE were targeted for 157 patients who had breast ultrasonography was diagnosed mass from June 2017 to September 2017. Pathology results of 157 patients showed a benign 92 patients(Age, $44.54{\pm}11.84$) and a malignancy 65 patients(Age, $51.55{\pm}10.54$). Final evaluation, biopsy result, and quantitative SWE result were obtained and compared with each other according to Breast Imaging Reporting and Data System(BI-RADS) of diagnostic breast ultrasonography. Quantitative SWE value and pathologic result showed the highest diagnostic specificity of 83.70% in Emean and sensitivity of 89.23% in Emin. Quantitative SWE result and biopsy result is statistically significant.(p=0.000). The optimal cut-off value for malignant lesions was 66.3 kPa and 63.7 kPa, respectively, for the sensitivity, specificity, high maximum mean elasticity value(Emax) and mean elasticity value(Emean) and this showed the highest diagnostic area under the ROC curve(Az) value compared to other SWE measurement(p=0.000). The addition of SWE to conventional US in breast mass make a increase diagnostic specificity and reduce unnecessary biopsy. Therefore, it is expected that it will be helpful to analyze the breast mass using the above analysis and apparatus.

Shear Performance of Post and Beam Construction by Pre-Cut Process (프리컷 방식을 적용한 기둥-보 공법의 수평전단내력)

  • Hwang, Kweonhwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.1-12
    • /
    • 2007
  • For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.

Utilization of Waste Tires as Soil Reinforcement; (1) Soil Reinforcing Effect (지반보강재로서 폐타이어의 활용; (1) 지반보강 효과)

  • 윤여원;최경순;윤길림;김방식
    • Journal of the Korean Geotechnical Society
    • /
    • 제20권3호
    • /
    • pp.107-117
    • /
    • 2004
  • This paper is to investigate the reinforcing effects of newly devised Tire-cell mat made of waste tires in sand. Parametric study on number of connection bolts between Tirecells, relative density of sand, embedded depth, number of reinforced layers and width of Tirecell mat was made by using plate loading tests. It is found that the number of connection bolt was enough to maintain the given pressure. The bearing capacity ratio(BCR), which is defined as the rate of ultimate bearing capacity of reinforced soil to that of unreinforced soil, is the highest at the lowest density. And the reinforcing effect can be obtained in case of embedded depth within 1.0B, where B is loading width. Also settlement reduction is the highest at the lowest density of sand. The effect of number of Tirecell reinforced layers with 0.4B to 0.5B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially, the bearing capacity increased remarkably at 1 layer of reinforcement and the degree of increase was small from 1 layer to 2 layers of reinforcement. The effect of mat width of Tirecell was not significant because of high stiffness of Tirecell although the maximum bearing capacity was shown at the 2.0B mat width and the reinforcing effects of Tirecell, in general, was prominent compared with those of commercial Geoweb.

Experimental Study on Fatigue Characteristics of the Single Spot Welded Joint (점용접재(点熔接材)의 피로(疲勞) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Chang-Min Suh;Sung-Soo Kang;Nam-Seong Hwang;Yong-Ich Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제29권4호
    • /
    • pp.214-226
    • /
    • 1992
  • In this paper, the characteristics of fatigue crack growth in the spot welded joint of the same kinds of specimens($HS{\times}HS,\;GA{\times}GAB$) and different kinds of specimens($HS{\times}GA,\;HS{\times}GAB$) which consist of dual phase high strength steel(HS) and monogalvanized steel(GA) were examined with static tension tests and axial tension fatigue tests. Some of the important results are as follows : 1. The divergence of tensile strengths among the same and different kinds of spot welds under the same conditions is comparatively low regardless of the difference of stiffness. 2. At the low load bevel and long life legion, the fatigue crack is initiated near the nugget. However, in the high load level and short life region, it occurs a tittle far from the nugget. 3. It has shown a linear relation between maximum stress Intensity factor, Kmax and fatigue life, $N_f$ among each of the spot welds and has gathered in a narrow band on the log-log graph paper. $Kmax=H{\cdot}{N_f}^{P}$ where H and P are a material constant.

  • PDF

Evaluation on the Horizontal Shear Strength of Precast Concrete Slab with the Inverted-Rib-Plus (리브플러스 PC슬래브의 수평전단강도 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Yun Cheul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권6호
    • /
    • pp.156-165
    • /
    • 2011
  • This study investigates the horizontal shear behavior of an interface between precast concrete (PC) and topping concrete(RC), and evaluates the horizontal based on the investigations by the experimental. Horizontal shear strength in connected surface is determined by the roughness an interface and the shear reinforcement or not. In this study, the main experimental parameters are the shear reinforcement types in the shape of loop-type and lattice-type, rebar spacing. A total of four specimens were shear strength tested and manufactured. As a result, the horizontal shear strength of reinforced connected surface was found to be controlled by deformation in vertical direction. Comparison of reinforcement shape, the mean initial crack load loop type specimens, the average maximum load and the junction of the average in terms of initial stiffness, respectively 33.7%, 45.9% and 55.2% were large enough. Evaluation results for shear strength equation of existing standard domestic, the loop-type reinforced 2.32 to 4.23 times, lattice-type reinforced 1.65 to 3.06 times appears to be higher. Behavior of interface or strength of structural design criteria was fairly safe side. It does not have any problems in the applied field is considered.

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • 제21권4호
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF