• Title/Summary/Keyword: Maximum stiffness

Search Result 767, Processing Time 0.027 seconds

A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib (리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구)

  • Young-Hoon Lee;Bum-Jin Park;Eui-Chul Jung;Jung-Gil Oh;Seok-Guwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

The Variation of Mechanical Properties with Directions of PET High Stretch Fabrics (PET 고신축사 직물의 방향에 따른 역학적 특성의 변화)

  • 김영민;박종범;김주애;조현혹
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2002
  • Stretch fabrics are wide-spread for high performance clothing use with requirements of fitness and adaptability to human's movement. A newly developed 100% PET high stretch fabric has excellent properties with respect to stretch, softness, bulkiness, and apparent volume compared to PET filament fabrics. The 100% PET high stretch fabric shows advantages of a dimensional stability, dye and agent adaptability in dying and finishing process, a property of stretch recovery after washing and lower production cost than that of spandex fabric. KES-FB was used to measure mechanical properties to various directions of the fabric. This study centered on whether the 100% PET high stretch fabric is suitable to quality and shape retention of fabric by testing several properties including tensile, compression, shear, bending and surface characteristic to various measuring directions. Tensile linearity showed maximum value at $0^{\circ}$ in plain and $90^{\circ}$ in twill. Shear Stiffness of plain and twill showed maximum value equally at $45^{\circ}\;and\;135^{\circ}$. Bending rigidity showed maximum value at $0^{\circ}$ in plain and $45^{\circ}$ twill. Mean deviation of MIU showed maximum value at $0^{\circ}\;and\;90^{\circ}$ in plain and $135^{\circ}$ in twill.

Experimental Study for Installation Damage Assessment of Geogrid (지오그리드의 시공중 손상 평가를 위한 실험적 연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • Geosynthetic reinforcements may be damaged during its installation in the filed. The installation damage mainly depends on two factors such as materials used and construction activities. This paper describes the results of a series of field tests, which are conducted to assess the installation damage of geogrid according to different maximum grain sizes of fills (40, 60, and 80 mm). These tests are done in three sites for twelve different kinds of geogrids. After field tests, the changes in tensile strength of the geogrids is determined from wide width tensile tests using both damaged and undamaged specimens. In the results of tests, tensile strength of the relatively flexible geogrids after field installation tests was decreased about from 20% to 40% according to the increment of the maximum grain size. On the other hand, for the relatively stiff geogrids, the loss of the tensile strength after site installation was examined below 5.2% independent of the maximum grain size of the soils. The results of this study show that the installation damage significantly depends on the stiffness of geogrid and is more obvious to a flexible geogrid and a fill material having higher maximum grain size.

A Study on the Optimum Design of Railway Vehicle Suspension Characteristics (철도차량 현가특성의 최적설계에 관한 연구)

  • 조동현;임진수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.6-12
    • /
    • 1999
  • In this study, the most important suspension characteristics of railway vehicle, such as primary and secondary stiffness, are optimized to maximize ride qualify. Critical speed, secondary suspension stroke oil tangent track and derailment coefficient on the maximum curvature, are selected as the performance constraints. Piecewise linear curving model is used to evaluate derailment coefficient where it is assumed that wheel/rail contacts occurs at tread or at idealized flange. The combined design procedure is used to optimize above design variables at the same time.

  • PDF

Development of Cable Damper System and Its Verification Test (사장교 케이블 댐퍼시스템 개발과 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Suh, Jeong-Gin;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.394-402
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper show its effectiveness in improving cable damping capacity.

  • PDF

Compressive Characteristics of Fabric Composites with Various Conditions (여러 가지 조건을 가진 직물 복합재료 시편의 압축특성)

  • Cheon Seong Sik;Oh Je Hoon;Chang Seung Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.135-138
    • /
    • 2004
  • Because the compressive properties such as compressive stiffness and compressive maximum strength of the fabric composite materials are essential to analyse the drape behaviour and estimate the quality of the final products, compressive tests of fabric composites with different stacking sequences were performed. Appropriate shape and dimensions for the compressive test specimens were prepared and several specimens with different conditions were tested and compared with each other.

  • PDF

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

Displacement Measuring Method using Terrestrial LiDAR for Safety and Serviceability Monitoring of Steel Beams (지상 LiDAR를 이용한 철골보의 안전 및 사용성 모니터링을 위한 변위 계측기법)

  • Lee Hong-Min;Park Hyo-Seon;Lee Im-Pyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.190-197
    • /
    • 2005
  • To monitor the safety and serviceability of a structures, structural responses including displacements due to various design and unexpected loadings must be measured. The maximum displacement and its distributions of a structure can be used as a direct assessment index on its stiffness. For this reason, there have been diversely studied on measuring of the maximum displacement of a structure. However, there is no practical method for measuring displacement of a structure. Therefore, in this paper, new displacement measuring method is developed and accuracy of LiDAR is examined in detail for development of a new method for measuring displacement of a structure.

  • PDF

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.69-73
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact force is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. The distribution of delamination along the thickness direction of curved laminates are also different from that of flat plates. Delamination was distributed rather even]y at each interface along the thickness direction of curved laminates. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF